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Fig. 1: Multimodal prompt for visualization authoring with VisPilot. (A) The user can create visualizations by providing sketching, text
annotations or directly manipulating existing visualizations. (B) VisPilot interprets the multimodal input and generates visualizations.

Abstract—Recent advances in large language models (LLMs) have shown great potential in automating the process of visualization
authoring through simple natural language utterances. However, instructing LLMs using natural language is limited in precision
and expressiveness for conveying visualization intent, leading to misinterpretation and time-consuming iterations. To address these
limitations, we conduct an empirical study to understand how LLMs interpret ambiguous or incomplete text prompts in the context
of visualization authoring, and the conditions making LLMs misinterpret user intent. Informed by the findings, we introduce visual
prompts as a complementary input modality to text prompts, which help clarify user intent and improve LLMs’ interpretation abilities.
To explore the potential of multimodal prompting in visualization authoring, we design VisPilot, which enables users to easily create
visualizations using multimodal prompts, including text, sketches, and direct manipulations on existing visualizations. Through two
case studies and a controlled user study, we demonstrate that VisPilot provides a more intuitive way to create visualizations without
affecting the overall task efficiency compared to text-only prompting approaches. Furthermore, we analyze the impact of text and visual
prompts in different visualization tasks. Our findings highlight the importance of multimodal prompting in improving the usability of LLMs
for visualization authoring. We discuss design implications for future visualization systems and provide insights into how multimodal
prompts can enhance human-AI collaboration in creative visualization tasks. All materials are available at https://OSF.IO/2QRAK.

Index Terms—Visualization authoring, large language model, multimodal prompting

1 INTRODUCTION

Visualization authoring tools have evolved rapidly to lower the bar-
riers of creating data visualizations, from expertise-driven languages
and formal grammars [1, 21, 27] to more accessible graphical inter-
faces [9,23,34,37,40,41]. With the emergence of large language models
(LLMs), visualization creation has been further simplified through nat-
ural language interfaces that automatically translate user utterances into
visualization specifications [4, 10, 33, 46]. However, despite their acces-
sibility, recent studies indicate that LLMs are limited in understanding
accurate visualization intent from natural language inputs [2, 28].

Conveying visualization intent in natural languages faces challenges
in terms of accuracy and expressiveness [20]. First, natural language
inherently contains ambiguity and implicit cues [5, 19, 31], requiring
LLMs to infer the user’s true intent. Since such inferences can be
ambiguous, the visualizations often deviate from the expected out-
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come. Second, there exists a fundamental modality gap between textual
descriptions and graphical visualizations: users struggle to precisely
articulate visual intent through text alone. Once the model generates an
unexpected visualization, it is difficult for users to diagnose or correct
the underlying issues through text-only instructions. These limitations
highlight the need for a more effective approach to instruct LLMs with
accurate visual intent in the process of visualization authoring.

To enable LLMs to more accurately understand visual intent, recent
research has explored multimodal prompting in the tasks of image gen-
eration [24] and visual question answering [35]. Multimodal prompting
combines textual and visual inputs to enhance the understanding of user
intent, allowing for more accurate and expressive outputs. Neverthe-
less, the use of multimodal prompts for visualization authoring remains
unexplored. It is unclear that whether visual prompts can effectively
address the limitations of text prompts and how to instruct LLMs with
multimodal prompts for visualization authoring tasks.

To inform our study, we conduct an empirical study to understand
the limitations of using text prompts to instruct LLMs for visualiza-
tion creation. Through a systematic analysis of 814 natural language
utterances used to request visualizations, we find that prompting LLMs
with natural language frequently leads to misinterpretation of user in-
tent due to three reasons: (1) limited expression of visual intent: text
prompts are inherently inflexible to express visual intent; (2) inadequate
guidance for LLM behavior: non-expert or inaccurate expressions con-
stantly lead to LLMs’ incorrect inferences; (3) misaligned human-LLM
design preferences: prompts without explicit design instructions result
in biased design preferences of different LLMs. To address these issues,
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we propose a multimodal prompting framework that incorporates visual
prompts as a complement to text prompts.

We develop VisPilot as a proof-of-concept system to evaluate the
feasibility of the multimodal prompting framework. The system allows
users to create visual prompts by sketching on a canvas. VisPilot sup-
ports four fundamental visual input actions: scratch (freehand drawing
of visualization elements), style (applying visual properties), annota-
tion (providing textual context), and manipulation (modifying existing
elements). This suite of interactions enables users to express visual-
ization intent through visual manners, complementing traditional text
prompts. The underlying prompting framework interprets these visual
inputs through a step-wise reasoning process, translating sketches into
precise visualization specifications. We demonstrate the effectiveness
of VisPilot through two case studies on visualization authoring and
data exploration, along with a user study comparing the performance of
text-only and multimodal prompting for visualization authoring tasks.
The results show that VisPilot achieves higher task accuracy and more
satisfying user experience without significantly affecting task efficiency
compared to the text-only prompting condition. Based on the findings
from evaluation studies, we identify several valuable design implica-
tions for multimodal prompting in visualization authoring scenarios.

In summary, our main contributions include: (1) an empirical study
identifying the limitations of text prompts for visualization authoring,
(2) a prompting framework with a prototype system1 that supports
users to create visualizations using multimodal prompts, and (3) an
evaluation demonstrating the impact of text and visual prompts on
specifying visualizations, along with design implications for future
multimodal visualization authoring systems.

2 RELATED WORK

2.1 LLMs for Visualization Generation

LLMs have been demonstrated as a convenient interface for natural lan-
guage to visualization tasks [16,38,43]. Recent research has focused on
enhancing LLMs for visualization generation, with a particular empha-
sis on model fine-tuning and prompting strategies. ChartLlama [10] and
ChartGPT [33] fine-tune language models with visualization domain
knowledge, while systems like LIDA [4] and FinFlier [13] leverage
carefully designed prompting strategies for visualization generation
without modifying the underlying models. Several studies have pro-
posed evaluation criteria for LLM-generated visualizations. VisEval [3]
and DracoGPT [36] establish benchmarks and metrics to assess visual-
ization quality, appropriateness, and adherence to design principles.

While these approaches have advanced LLM-based visualization
generation, they primarily formulate the visualization requirement as a
natural language prompt, which may not fully capture the complexity
of user intent and design principles. Our work aims to address this gap
by exploring multimodal prompting strategies that incorporate both
visual and textual elements to enhance the generation of visualizations.

2.2 Multimodal Prompt for Generative Models

Due to the inherent ambiguity and redundancy of text prompts, re-
searchers have explored multimodal prompt design for LLMs [47]. For
example, visual prompts like colorful boxes or circles can direct multi-
modal large language models (MLLMs) to specific regions of interest,
thereby improving their generation quality [18, 42, 45]. This strategy
has been widely applied to computer vision tasks such as visual ques-
tion answering [35], image editing [24], and knowledge tagging [8].
Recent studies have also investigated interaction-augmented prompts
to facilitate precise user intent understanding [28]. Chen et al. [2]
propose a design space for generative visual analytics and develop a
direct manipulation interface. Similarly, DirectGPT [22] characterizes
four direct manipulation actions to enhance the efficiency of human-
LLM communication. However, these approaches typically transform
interactions back to engineered text prompts, without explicitly incor-
porating visual inputs. Moreover, the current literature lacks a clear
understanding of multimodal prompt design considerations to improve

1An online demo is available at https://wenzhen.site/vispilot.

the expressiveness and efficiency of the visualization authoring pro-
cess. Our work extends prior endeavors by identifying four key design
principles for visual prompting and examining how different prompt
modalities influence visualization specification.

2.3 Multimodal Interactions for Visualization

Multimodal interactions have been widely studied in the context of visu-
alization systems, enabling users to create or interact with visualizations
through multiple input modalities such as direct manipulations [25],
freehand sketches [29], and natural language queries [26]. Due to the
accessibility and extensibility of natural language, many systems have
explored combining verbal and visual modalities to enhance user experi-
ence in visualization authoring. DataTone [7] and Orko [32] pioneered
approaches that integrate natural language with direct manipulation
interfaces, allowing users to refine ambiguous queries through inter-
active widgets. Similarly, tools like Valletto [15, 26] facilitate natural
language interactions with visualizations through contextual dialogs
and touch-based interactions. Recent systems such as WYTIWYR [44]
and VisLTR [12] have further advanced the integration of multimodal
inputs through cross-modal neural networks, which recommend visual-
izations based on user queries and multimodal context. These studies
have demonstrated the potential of multimodal interactions in enhanc-
ing user experience on data visualization and exploration. Informed
by them, we aim to investigate how multimodal prompting can be
effectively utilized in LLMs for visualization authoring.

3 EMPIRICAL STUDY: TEXT PROMPT FOR VISUALIZATION

To understand the limitations of text prompts for visualization authoring,
we conduct a systematic analysis of 814 natural language utterances
used to request visualizations. The analysis identifies the key challenges
that multimodal prompting approach needs to address. In particular,
our empirical study aims to address the following research questions:

• RQ1: How do LLMs interpret natural languages for visualization
specifications? The natural language utterance for creating a vi-
sualization often expresses multifaceted preferences for visualiza-
tion design, such as mark type, encoding choices, etc. Previous
studies [16, 30] have shown that users often explicate only partial
specifications in their utterances. These observations raise the ques-
tion of how LLMs infer complete visualization specifications from
ambiguous or incomplete natural language utterances.

• RQ2: What makes LLMs generate unexpected visualization spec-
ifications? The performance of LLMs in generating visualization
specifications is often unpredictable. While recent studies [3, 43]
have discussed the reasons behind unexpected results in terms of
prompt design and model capabilities, the effects of ambiguity and
incompleteness of user utterances are still unclear. We aim to un-
derstand how the ambiguity and incompleteness in natural language
expressions contribute to unexpected visualization outputs.
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Fig. 3: The analysis results of LLM interpretation of utterances. (A) The
number of implicit inferences made for each utterance, where each item
of specification components is counted as a separate inference if it is
inferred by the LLM. (B) The percentage of explicit references or implicit
inferences made for each specification component, where a component
is counted as implicit if at least one of its items is implicitly inferred.

3.1 Methodology
Data Source. We analyze the corpus of 814 natural language utterances
collected by Srinivasan et al. [30]. This dataset was compiled through
a structured study with 102 participants who were shown ten canonical
visualizations (e.g., bar charts, line charts, scatterplots) and asked to
provide natural language utterances they would use to create these
visualizations. Each utterance in this corpus is paired with both the
data source and the target visualization written in Vega-Lite code.
Framework. To better understand how LLMs interpret natural lan-
guage utterances for multifaceted visualization specifications, we estab-
lish a framework to abstract the components of specifications referring
to previous work [23, 27]. This framework serves as a foundation for
our analysis of the corpus and the design of our multimodal prompting
approach. We define a specification S as a composition of four essential
components that together determine the complete visualization design:
• Data Schema D . This component defines the structural properties of

data, including attribute names and data transformations. Formally,
D = {(ai, fi)} where ai is an attribute, and fi is an optional aggre-
gation function (e.g., sum, average, count). The schema provides a
foundation for understanding the data’s structure and semantics.

• Mark M . Marks constitute the fundamental graphical primitives
that represent data items. Formally, M = {m1,m2, ...,mn} where mi
is a mark type (e.g., point, line, bar), which defines how data items
are visually represented and the basic visual form of the chart.

• Encoding E . This component specifies the mapping between data
attributes and visual properties: E = {(ai,v j)} where ai is a data
attribute and v j is a visual channel (e.g., position, size, color). These
mappings transform abstract data into perceptible visual forms.

• Design G . The design component captures visualization properties
not directly tied to data semantics, including G = {g1,g2, ...,gn}
where each gi represents stylistic elements like background color,
gridlines, axis properties, chart title, etc. These elements typically
focus on the aesthetics and accessibility of the visualization.

Procedure. We analyze the performance of LLMs in interpreting nat-
ural language utterances to visualization specifications in two steps:
(1) LLM Processing (Fig. 2), where we instruct the model with 814
utterances to generate visualizations through Vega-Lite specifications,
followed by a self-explanation of its inference rationale and an accuracy
evaluation; (2) Expert Analysis, where four domain experts indepen-
dently analyze the results of LLM processing to identify the limitations
of text prompts and the reasons behind LLM misinterpretation. Af-
terwards, the experts conduct a meeting to discuss and resolve any
discrepancies in analysis results, addressing the two research questions.

We perform the analysis on three advanced LLMs (Gemini-2.0-Flash,
GPT-4o, and Claude-3.5-Sonnet), and have consistent insights across
all three models. To simplify the presentation, we mainly report the
results of Gemini-2.0-Flash in this paper, while the results of the other
two models are included in the supplementary material.

3.2 LLM Interpretation of Natural Language Utterances
To address RQ1, we categorize the LLM interpretation patterns of natu-
ral language utterances into two types, depending on the explicitness
of the specification expressed in the utterance:

• Explicit Reference: The LLM interprets the user intent based on
sufficient rationale and explicit specification of the visualization
components. For example, "show me the average sales by re-
gion using a bar chart" explicitly specifies the data schema D =
{(sales,average),(region,raw)} and the mark type M = {bar}.

• Implicit Inference: The LLM interprets the user intent based on
implicit assumptions and incomplete specification of the visualization
components. For example, "Show me the sales by region" does not
explicitly specify the aggregation function (e.g., average, sum) or the
mark type (e.g., bar, line), leading to implicit inference of the data
schema D = {(sales,sum),(region,raw)}, mark type M = {bar},
and encoding E = {(region,x),(sales,y)}.

We employ the self-explanation mechanism of LLMs [14] to identify
these interpretation patterns. The LLM is prompted to generate a self-
explanation of its reasoning process, including the rationale for its
interpretation with a classification of interpretation patterns (explicit or
implicit) for all components in the specification.

Results. Figure 3-A shows that the user utterances are widely ambigu-
ous or incomplete, leading to at least three implicit inferences for each
utterance (µ = 7.27, σ = 2.23). The top 3 frequent inference made by
the LLMs is on the mark style (814 times), x-axis encoding (724), and
y-axis title (567). When the user requests the most complicated visual-
izations in the corpus, such as “For each country show the relationship
between average acceleration and number of cylinders”, the LLMs
need to make 16 implicit inferences to generate the target visualization,
involving design (10), encoding (4), mark (1), and data schema (1) spec-
ifications. We then analyze the implicit inference patterns specifically
on four specification components, as shown in Fig. 3-B.
• Data Schema (20%). The data schema is the most frequently ex-

plicitly specified component, with only 20% of utterances exhibiting
ambiguity or incompleteness. The most frequently inferred data
schema is the y-axis aggregation (151), which is often assumed to
be sum or average when not explicitly stated. Besides, the users
also frequently omit the third data attribute (139) in their utterances,
which is often used for color or column in the encoding specification.

• Mark (43%). More than half of utterances manage to explicitly
specify the mark type through describing the chart type (e.g., bar
chart, line chart) or the shape of the marks (e.g., point, line), while the
other 36% of utterances lead to implicit inferences on the mark type.
These utterances are often expressed in vague terms like “relationship”
or “compare” for their analytic tasks, which do not explicitly indicate
the mark type. The most frequently inferred mark type is bar (47%
of 420 bar charts), followed by point/circle (44% of 262 scatter plots)
and line (38% of 95 line charts).

• Encoding (77%). Most utterances lead to implicit inferences on
encoding choices. The users usually do not explicitly specify the
encoding choices for coordinates (727 of x-axis and 509 of y-axis),
which are often inferred by “by convention” or “by experience” as
the LLMs explained. The color encoding is merely inferred, as users
often explicitly specify the color encoding such as “color by region”.

• Design (96%). The design component is the most frequently in-
ferred specification, due to users rarely providing explicit design
preferences in their utterances. The LLMs typically infer the design
properties based on their own preferences. Notably, the Gemini
model prefers to use default settings for mark style (814), axis title
(567), and axis format (384), which often misalign with the target vi-
sualization. When the utterance involves specific analytic intent, the
model may also infer the design properties based on the context, such
as “show me the distribution of average sales by region” is inferred
as a histogram with a binning design and a proper axis format.

3.3 Analysis of LLM Misinterpretation
To address RQ2, we evaluate the performance of LLMs on visualiza-
tion generation by comparing the generated specifications against the
ground truth. We adopt hard constraints for the data schema, mark, and
encoding components, and soft constraints for the design component
when evaluating the accuracy. The overall accuracy of a generated



visualization is defined as 1 if and only if all hard constraints strictly
match the ground truth, otherwise 0. Consequently, the Gemini model
achieves an overall accuracy of 47% on the 814 utterances, with 73%
for data schema, 92% for mark, 69% for encoding. We then investigate
how these implicit inferences may lead to LLM misinterpretation and
incorrect results. The accuracy is significantly lower when the speci-
fications are implicitly inferred, with only 53% for data schema, 85%
for mark, and 71% for encoding. Through an in-depth analysis of the
failure cases, we identify three common misinterpretation patterns.

Limited Expression of Visual Intent. Text prompts are inherently
inflexible and inconvenient to express users’ visual intent. First, users
usually use vague terms like “relation” or “associate”, rather than
explicitly stating chart types like “line” or “scatter”. This typically
yields much lower fidelity for marks, as LLMs might fail to capture
users’ nuanced intents. For example, “relationship between release
year and average production budget” leads to a bar chart instead of the
expected line chart. Second, when dealing with encodings, text prompts
often lack axis-specific details that clearly define the visual mappings
and layout. A common misinterpretation by LLMs is the incorrect
assignment of data attributes to the x-axis or y-axis, unless explicitly
specified or certain phrases like “horizontal” or “vertical” are used.
Additionally, when users’ utterances involve a third encoding channel
without providing explicit instructions, LLMs frequently struggle to in-
fer the correct encoding type like color or size, especially in scatterplots
or bubble charts. In summary, text prompts often fail to capture the
full range of users’ visual intent due to linguistic ambiguities and the
difficulty of describing precise visual relationships through text alone.

Inadequate Guidance of LLM Behavior. It is observed that, even
when visualization specifications are explicitly stated in the utterances,
LLMs still struggle to generate accurate visualizations. In certain cases,
the absence of specific keywords constantly leads to LLMs’ incorrect
inferences. For example, keywords like “across”, “over”, and “by” are
very likely to guide LLMs to the correct encoding choices, while other
terms like “between” or “versus” are less effective. However, users
are often unaware of which keywords are essential for guiding LLMs’
behavior, leading to misinterpretation. The situation is exacerbated
when dealing with complex utterances that involve multiple encoding
channels or uncommon designs. Even when users provide specific
and detailed instructions, LLMs still struggle to generate accurate
specifications. For example, we find that LLMs keep failing to create
multi-view visualizations, such as small multiples or concatenated
views, unless users explicitly mention relevant terms (e.g., “separate”,

“split”). A typical case is the misinterpretation of “the average of
Production Budget categorized by Creative Type and parameterized by
Content Rating”, where LLMs always generate a single stacked bar
chart instead of a faceted view. These observations indicate that users’
lack of knowledge in formulating effective text prompts frequently
hinders LLMs from interpreting and fulfilling their requirements.

Misaligned Human-LLM Design Preferences. Visualization au-
thoring relies on specific design knowledge drawn from established
best practices. However, users’ design preferences are often misaligned
with LLMs’ design choices learned from their training data. In our
analysis, we find that LLMs tend to overwhelmingly favor certain de-
fault settings or common design patterns, leading to unexpected or
inappropriate results. This misalignment is particularly evident in the
misinterpretation of stylistic aspects like axis formats, color schemes,
or chart titles. As users rarely provide explicit instructions for these
visualization properties, LLMs resort to their preconceived notions,
which may deviate from users’ expectations, or sometimes decrease the
readability or aesthetics of the visualization. For example, LLMs often
generate scatterplots with hollow circles instead of filled ones, or use a
sequential color scheme instead of a diverging one, which may not be
suitable for the given data context or analytic tasks. Another common
issue is the handling of time units, where LLMs frequently fail to infer
the correct time granularity for the x-axis, causing visual clutter. These
discrepancies between users’ design preferences and LLMs’ learned
behaviors demand extensive customization operations and iterative
enhancements, which can be frustrating and time-consuming.
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Fig. 4: Our prompting framework instructs the LLM to interpret visual
prompts to visualization specifications step by step.

4 LEVERAGING VISUAL PROMPT

Informed by our findings from the empirical study, we design a multi-
modal prompting framework that incorporates visual prompts to instruct
LLMs for visualization authoring tasks.

4.1 Design Considerations
To address the limitations of text prompt (Sec. 3.3), our prompting
framework is designed following three key design considerations:
C1 Expressiveness: The visual prompting should enable users to

express their visualization intent in a flexible and comprehensive
manner, addressing the limited expression of visual intent present
in text prompting approaches.

C2 Structured Interpretation: Visual prompts should be systemati-
cally captured and translated into precise specification constraints
that LLMs can accurately interpret, overcoming the inadequate
guidance issues and ambiguities inherent in text prompts.

C3 Interaction Intuitiveness: Visual interactions should leverage
users’ natural understanding of visualization creation, enabling
iterative refinement while bridging the design preference bias be-
tween human and LLMs that often requires extensive customization
in the text prompting approaches.

4.2 Visual Input Actions
To support creating expressive visual prompts with flexible interac-
tions (C1), we propose four fundamental visual input actions that can
be performed on a sketch canvas. These actions are inspired by a
comprehensive literature review of existing visualization authoring
tools [2, 28, 39], which highlights common user interactions in visu-
alization authoring tasks. As such, users can freely create expressive
visual prompts in a sketch canvas environment using these actions:

Scratch: Users can sketch and layout visual elements on the canvas
to represent their desired visualization. This action allows users to
express their visual intent through freehand drawing, which can be
interpreted as a specific mark type or layout.
Style: Users can apply visual styles to the marks, such as color,
size, and shape, to convey their design or encoding preferences.
Annotation: Users can annotate to the sketch visualization to
provide additional context or information about specific elements.
Manipulation: Users can perform direct manipulation to select
and modify specific elements of existing visualization, such as
resizing or repositioning marks, to refine their design.

4.3 Visualization Specification Operations
To support LLMs in understanding visual input actions and accurately
interpreting user intent (C2), we summarize the potential user intents
as two categories of operations: Creative Operations and Iterative Op-
erations. The creative operations are derived from the specification
components identified in our corpus analysis and are designed to be
machine-interpretable. Each operation represents the user intent on
a specific aspect of the visualization specification. Meanwhile, the
iterative operations are designed to refine and enhance existing visual-
izations (C3). To simplify the presentation, we include only the most
common operations in this paper, while the complete list of operations
is provided in the supplementary material.
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Fig. 5: The interface of VisPilot includes four components: (A) Chat Interface, (B) Free-drawing Canvas, (C) Design Panel, and (D) Authoring Flow.

Creative Operations. The creative operations aim to create a new
visualization from scratch, allowing users to express their visual intent
covering the entire specification space.
• SelectData specifies the data attributes to be visualized. Users can

indicate their selection of attributes by annotate keywords in the
chart title, legend, or axis labels. This operation represents constraints
on the field properties in the data schema specification.

• TransformData specifies the data transformations to be applied to
the selected data attributes. Users can express the transformation re-
quirements through explicit annotations along with data attributes
or visual examples, for instance, sketching a descending bar chart
to indicate sorting. This constrains a series of properties in the data
schema specification, including aggregate, sort, and transform, etc.

• SetMarkType specifies the type of mark to be used in the visualiza-
tion. Users can sketch desired visual marks on the canvas, which
presents constraint on the type property in the mark specification.

• SetMarkStyle specifies the visual styles to be applied to the marks.
Users can apply styles to the marks, such as color, size, and opac-
ity, to convey their design or encoding preferences. This constrains
on either properties in the design specification such as mark.fill, or
properties in the encoding specification such as encoding.color.

• BindCoordinate specifies the mapping of data attributes to coor-
dinate axes. Users can sketch the coordinate axes with data
attributes labeled on them to indicate their intents. This typically
constrains properties like x.field, y.field in the encoding specification.

• Layout specifies the layout of the visualization views. Users can
sketch the layout of the visualization views on the canvas, such as
arranging multiple charts in a grid or juxtaposition. This constrains
properties such as column.field or facet in the encoding specification.

Iterative Operations. The iterative operations refine and enhance an
existing visualization through progressive refinement.
• Edit modifies existing visualization specifications to refine the visu-

alization. Users can select elements to highlight their target with
visual expressions, such as changing the color of marks or modifying
the axis title. This instructs the model to edit the corresponding visual
elements on the basis of the existing visualization specification.

• Delete removes specific elements or properties from the existing
visualization. Users can select elements to remove or properties
to disable. This sets specific properties to null/false or removes them
entirely from the Vega-Lite specification.

4.4 Interpretation of Visual Prompts
To instruct LLMs to accurately interpret visual prompts, we propose a
novel multimodal prompting framework that systematically guides the
model through visual input interpretation and visualization generation.
Our framework structures the LLM reasoning process through five
sequential steps, as illustrated in Figure 4.

The model reasoning starts with Observation, where the model
receives visual inputs and observes user actions on the sketch canvas.
The model is required to report its observations with specific location
information (e.g., “the user annotated ‘year’ on the x-axis”) to en-
sure it accurately captures user actions in a visual context. Next, the
model proceeds to Thinking, where it infers the user’s underlying
visualization intent based on the observed visual input context and the
conversation history, identifying which specification components (data,
mark, encoding, etc.) the user is trying to express. After that, the model
enters the Planning phase, where it maps the inferred intent to concrete
specification operations (SelectData, SetMarkType, BindCoordinate,
etc.) and generates a list of operations to be performed. Subsequently,
the model generates a Summary of its understanding and planned
operations, explicitly stating its interpretation of the user’s intent and
the operations it will perform to fulfill that intent. Finally, the reasoning
process ends with the Generation phase, where the model produces a
complete Vega-Lite specification that implements all the visualization
requirements expressed through the visual prompts.

5 THE VISPILOT SYSTEM

To evaluate the feasibility of multimodal prompting for visualization
authoring, we design VisPilot as a proof-of-concept system. Figure 5
shows an overview of its interface including four main components.

Chat Interface. The chat interface comprises a data table view
and a chat view (Fig. 5-A). Users can upload a dataset to start the
conversation with the system. The dataset is displayed in the data table
view and automatically sent to the LLM. Below the data table, the
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Fig. 6: The use case of VisPilot for data exploration. A user explores a dataset containing information about the top tracks on Spotify through an
iterative process of sketching (A1–A8) and visualization generation (B1–B8).

LLM will initially respond to the dataset and ask the user for a specific
visualization task. In the following conversation, users can instruct the
LLM to generate visualizations by natural language in this chat view.
As we employ the prompting framework presented in Sec. 4.4, the LLM
commonly generates long responses containing its thinking process and
visualization specification code. We hide these long responses and only
show the summary part of responses to avoid overwhelming users with
too much information.

Free-drawing Canvas. The free-drawing canvas allows users to
create visual prompts for the LLM (Fig. 5-B). Users can use mouse,
touch, or pen as input devices to draw on the canvas. Refer to the
prompting framework (Sec. 4.4), we provide a set of widgets to help
users create visual prompts for the LLM. The pen, shape, axis, and
text widgets are used to create sketches of visualizations, while the
two selection widgets are used to select the elements drawn by users or
generated by the LLM for further manipulation. Once the user clicks
on the Ask VisPilot button, the system will send the sketch image as a
visual prompt to the LLM.

Design Panel. The design panel presents a configuration panel and
a design idea panel (Fig. 5-C). The configuration panel allows users
to configure the style properties of selected elements in the canvas.
The design ideas panel displays the design ideas generated by the
LLM based on user instructions, including the generated Vega-Lite
specification code and the corresponding visualizations. Users can add
the satisfied visualizations to the canvas or ask the LLM to generate
alternative design ideas.

Authoring Flow. The authoring flow of VisPilot is shown in Fig. 5-
D. It shows the steps of the authoring process made by the user. All
user interactions and LLM responses are recorded in the authoring flow.
The interactions for text prompting and visual prompting are shown in
gray and blue colors, respectively. Each visualization generated by the
LLM is shown below the timeline, presenting the process of how the
user completed the authoring task.

VisPilot is implemented as a web application using React and Vega-
Lite, with generative capability supported by APIs from commercial
LLMs, such as GPT-4o and Gemini 2.0. The system is accessible
through desktop and tablet devices, allowing users to input multimodal
prompts using the mouse, touch, pen, or keyboard.

6 CASE STUDIES

To demonstrate the effectiveness of VisPilot, we present two cases that
showcase how users can leverage multimodal prompts to complete
visualization authoring (Sec. 6.1) and data exploration (Sec. 6.2) tasks.

6.1 Case 1: Visualization Authoring

The first case study follows Alice, a data journalist, in her authoring
process of a visualization showing how different categories of consumer
goods contribute to inflation over time (Fig. 1). The process begins with
Alice uploading a dataset containing the Consumer Price Index (CPI)
data from 2003 to 2021. In the data table view, she can see the dataset
including the CPI values for various categories of goods and services,
such as food, education, and transportation. Afterwards, she has an idea
of creating a streamgraph-style area chart to visualize the contribution
of different categories to the overall inflation rate, which she sketches
on the free-drawing canvas (A1). VisPilot then generates a visualization
based on her sketch, displaying the contribution of different categories
to the overall inflation rate over time (B1).

Alice is satisfied with the visual form of the generated chart but
does not like the default color scheme, which she finds visually com-
plex. To address this, she modifies her sketch by drawing a colored
example on the right side of the chart, indicating her preference for a
gradient blue color palette (A2). VisPilot responds by implementing a
sequential blue color scheme in the chart (B2). To further enhance the
readability of the chart, Alice refines the color scheme by reversing ex-
ample colors, and annotates titles on the sketch (A3). After the system
generates the updated chart with the new color scheme and titles (B3),
Alice is pleased with the overall design but wants to make some final
adjustments directly on the visualization.

She uses the selection tool to select the legend and draws an arrow
pointing to her desired position (A4), prompting the system to repo-
sition the legend to the top-right area of the plot (B4). She further
simplifies the design by crossing out the axis titles (A5), which the
system removes from the chart (B5). As a complementary step, Alice
decides to add a statement under the chart title to provide context for
the visualization (A6). VisPilot interprets her prompts and adds the
statement as the subtitle of the chart (B6). Finally, Alice is satisfied
with the final design and saves the visualization. This case study demon-
strates that our prompting framework is effective in guiding the LLM
to generate visualizations that precisely align with user preferences.

6.2 Case 2: Data Exploration

The second case demonstrates how VisPilot can assist users in data
exploration tasks which involve continuous progress of data analysis
and visualization authoring (Fig. 6). This case study follows Bob, a data
analyst, who is interested in exploring a dataset containing information
about the top 2000 tracks on Spotify from 2000 to 2019.



Bob is interested in popular music and wants to explore the dataset to
find out which genres are the most popular and how they relate to other
features of the songs. After uploading the dataset and examining the
data table, he decides to start his exploration by viewing the distribution
of song popularity. He sketches a coordinate axis with the annotation
“popularity” beside the axis (A1), and the system responds with a
histogram showing the distribution of song popularity (B1). Bob is
intrigued by the highly popular tracks and modifies the visualization
by changing the x-axis title to “genre” and annotating the title “Top
20 Genres” (A2). The system generates a ranked bar chart of the top
20 genres by mean popularity (B2). To enhance the visualization’s
informativeness, Bob indicates his interest in seeing specific values
(A3), prompting the system to add popularity value annotations to the
bars (B3). Seeking further insights, Bob wants the LLM to recommend
another visualization derived from the current one. He draws an arrow
pointing to a question mark beside the chart (A4), which leads the
system to visualize the average danceability of the top 20 genres (B4).

Bob’s curiosity then leads him to explore more features that might
be related to the popularity of songs. He sketches three hismograms
and annotates “popularity-related features” on the top (A5). The system
generates three histograms showing the distributions of danceability,
energy, and tempo (B5). Particularly interested in the speechiness at-
tribute, he sketches a donut chart labeled “speechiness” (A6), which the
system renders to reveal a pattern where songs with higher speechiness
values were less common in the dataset (B6).

For his final analysis, Bob draws a coordinate axis labeled with
“speechiness” and “popularity” (A7), prompting the system to generate
a scatter plot showing their relationship (B7). To enhance the visual-
ization’s clarity, he adds a hip-hop-styled color legend for speechiness
(A8), which the system incorporates into a color-encoded visualization
of the relationship between these variables (B8).

7 USER STUDY

We conducted a controlled user study to evaluate the effectiveness of
multimodal prompting for visualization authoring tasks.

7.1 Methodology
Our study followed a within-subject design to account for the individual
differences among participants. VisPilot was used as the technology
probe to explore the potential of multimodal prompting for visualization
authoring. We aim to evaluate the multimodal prompting approach from
three aspects: (1) the accuracy and efficiency of creating visualizations,
(2) the usability and user experience of the system, and (3) the user
behavior and interaction patterns in different prompting conditions.

Conditions. The study was conducted in two prompting conditions:
• Text Condition. In the text prompting condition, users can interact

with the system only through the chat interface, which provides simi-
lar user experience to common LLM chat interfaces (e.g., ChatGPT).
Users can type their natural language utterances, and the system
responds with chat messages and visualizations.

• Multimodal Condition. In the multimodal prompting condition,
users can interact with the system without restrictions. Comparing to
the text condition, users have additional capabilities to create visual
prompts from scratch or existing visualizations. They are free to use
text or multimodal prompts to convey their intents, and the system
respond with chat messages and visualizations as the text condition.

The two conditions both used the gemini-2.0-flash-001 model as the
LLM backend, along with the same configuration and system prompt.

Participants. We recruited 10 participants, who were all familiar
with the use of LLMs and had used them for creating data visualiza-
tions. Two of them worked in a fintech company, who need to create
visualizations in their daily work. The other eight participants were
graduate students from a local university, who commonly need to create
visualizations for data analysis and research.

Tasks. We designed a set of replication tasks in the study. There were
four groups of visualizations for the participants to create (see Fig. 7),
including two simple-level groups (G1, G2), and two complex-level
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Fig. 7: The target visualizations of tasks (G1, G2, G3, G4).

groups (G3, G4). Each group was designed to contain three commonly
used types of visualizations involving bar chart, line chart, and scatter
plot. Participants were asked to replicate one simple and one complex
group of visualizations in each condition (12 trials in total). They
were asked to create visualizations as similar as possible to the targets,
including the data schema, marks, visual encodings, and design details.

Procedure. We conducted a 90-minute session with each participant.
After obtaining informed consent, participants completed a pre-study
questionnaire about their experience with data visualization tools and
LLM-based systems. We then provided a 10-minute introduction to
VisPilot, including a demonstration of its features in both text and
multimodal conditions.

The main study consisted of four trials where participants replicated
visualization groups using VisPilot. We counterbalanced the order of
conditions and task complexity across participants to mitigate learning
effects. Each participant experienced both conditions (text-only and
multimodal) and both complexity levels (simple and complex). For
each trial, participants were given the target visualization and instructed
to recreate it as accurately as possible within a 10-minute time limit.
We encouraged participants to think aloud during the process.

After completing all trials, participants filled out a post-study ques-
tionnaire to evaluate the system usability and cognitive load. We con-
cluded with a semi-structured interview to gather qualitative feedback
about their experiences using different prompting modalities. All ses-
sions were recorded for later analysis with screen recordings. Each
participant was compensated with $20 for their time and effort.

Metrics. We measured two prompting conditions in terms of quanti-
tative and qualitative metrics. The quantitative metrics evaluated the
task performance including task efficiency and accuracy. For task effi-
ciency, we recorded the completion time at two time points, including
the first-time creation of the visualization and the last-time generation
by the LLM, which represent the time for completing creation and
iteration tasks, respectively. For task accuracy, we recorded the num-
ber of mismatches at two time points as above, which represents the
number of mismatched visualization properties. Qualitative metrics
evaluated system usability and user experience through 7-point Likert
scale questionnaires, collected from post-study interviews.

7.2 Results
We analyzed the data collected from the user study, including task
performance metrics, qualitative feedback, and user behavior patterns.

7.2.1 Quantitative Results
Overall, the multimodal condition achieved higher task accuracy with-
out significantly affecting task efficiency compared to the text condition.
We conducted a series of paired t-tests to compare the two conditions
(α = 0.05). The details of the results are as follows:
Task Efficiency. The multimodal condition did not significantly differ
from the text condition in terms of completion time for the first-time
creation of visualizations (Simple: t = 1.13, p = .265; Complex: t =
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1.03, p = .308) and the last-time generation by the LLM (Simple: t =
−0.11, p = .913; Complex: t = 1.04, p = .304). This suggests that,
even typing text prompts was generally faster than drawing visual
prompts, the added workload did not significantly affect the overall task
efficiency. During the study sessions, we constantly observed that, in
the text condition, participants tended to spend more time on thinking
and formulating the prompts than on the actual interaction with the
system, while vice versa in the multimodal condition. This can be
ascribed to the intuitiveness and directness of visual prompts in the
multimodal condition, which allowed participants to quickly iterate on
their visualizations, thereby complementing the additional time spent
on drawing and manipulating visual elements.
Task Accuracy. The multimodal condition achieved fewer mismatches
in total compared to the text condition for the first-time creation of
visualizations (Simple: Σ = 37 < 44; Complex: Σ = 130 < 155) and
the last-time generation by the LLM (Simple: Σ = 0 < 2; Complex:
Σ = 6 < 14). Generally, multimodal prompts helped participants obtain
visualizations that were more aligned with their expectations. We
noticed that for subtle design properties such as axis ticks/formats, color
schemes, and legend placements/orientations, using visual prompts was
more precise and user-friendly than pure texts. This demonstrates
the superiority of multimodal prompting in conveying detailed and
nuanced visual intents and reducing users’ cognitive load, especially
for complex visualizations that exhibit uncommon encoding choices or
require specific spatial and layout considerations.

7.2.2 System Usability
The usability results are summarized in Fig. 8. Overall, participants
appreciated the usability of the multimodal condition for creating visu-
alizations. We analyze the results from the following dimensions:
Easy to Use and Learn. The multimodal condition achieved a compara-
ble score to the text condition in terms of ease of use (µ = 5.8,σ = 1.2)
and learnability (µ = 6.0,σ = 0.8). The reason why the multimodal
condition did not score higher was that, text prompts were inherently
intuitive and easy to use for participants who were already familiar with
LLMs. Nevertheless, it did not require a steep learning curve to use
our proposed visual input actions, as stated by most participants. Once
they became accustomed to the interface, they found it “natural and
intuitive” (P3), just like “drawing on a whiteboard” (P5). Also, some
participants mentioned that the multimodal condition would be “more
accessible to people not familiar with LLMs” (P2) and “even more
useful with a tablet for students to learn about visualizations” (P2).
Effort and Frustration. The multimodal condition scored higher in
terms of effort (µ = 5.7,σ = 1.1) and frustration (µ = 5.2,σ = 1.7)
compared to the text condition. We observed that participants struggled
with the text condition when creating visualizations that required spatial
and layout considerations. As stated by P8, “I could not move the
legend to the bottom-right corner inside the chart, no matter how hard
I tried to rephrase my text prompts”. This significantly increased their
effort and frustration levels. In contrast, the multimodal condition

allowed participants to directly add an arrow on the canvas to indicate
the desired position, which was more “effective and convenient” (P9).
However, P6, who was experienced with the Vega-Lite grammar, found
the multimodal condition “less efficient for simple tasks”, as he could
proficiently write accurate instructions rather than tediously drawing
them. This suggests that different users may have different preferences
for the two prompting modalities based on their domain expertise.
Satisfaction and Real-world Application. The multimodal condi-
tion was more favored than the text condition in terms of satisfaction
(µ = 6.1,σ = 1.0) and willingness to use again (µ = 6.5,σ = 1.0).
For example, P2 remarked, “visual interactions were more engaging
and fun to use, making me feel like I was designing visualizations
rather than just typing text prompts”. They also suggested several
features to improve the multimodal interface, such as “supporting pre-
defined sketch templates” (P9) and “enabling more precise selection
and control of visual elements” (P5). Additionally, most participants
were willing to integrate visual prompts into their daily workflow for
creating visualizations. They believed that visual inputs could be “a
great complement to existing text-based visualization authoring tools”
(P10) and could potentially be applied to various scenarios, such as

“visualization education” (P2), “collaborative design sessions” (P6),
and “exploratory data analysis” (P1).
Preference. Most participants (9/10) expressed a preference for the
multimodal condition over the text condition. While text prompts
are concise and intuitive for simple user requirements, participants
acknowledged their inherent limitations in conveying nuanced visual in-
tents, especially for complex visualizations and detailed visual changes.
Also, as stated by P9, the multimodal condition was particularly useful
for “creative scenarios where the desired outcome might be difficult
to articulate with words alone”. Meanwhile, some participants (P3,
P8) wished to combine visual input with text input to “make the most
of each other’s advantages” (P3). Regarding the only one participant
(P7) who preferred the text condition, he explained that, “for me, text
prompts are more efficient to express my intents, for example, typing
the word ‘sort’ is far more convenient compared to drawing multiple
bars with lengths that decrease in size”. We attribute this to different
user habits, reinforcing the importance of providing multiple prompting
modalities to cater for various user needs and preferences.

7.2.3 User Behaviors and Interaction Patterns

We observed notable user behavior patterns across the two prompting
conditions, beyond the quantitative and qualitative metrics.
Text Prompting Strategies. In the text condition, participants often
engaged in iterative prompt refinement: when initial outputs did not
match their intent, they would rephrase, simplify, or break down their
requests into smaller steps. For instance, P8 described a process of
“trial and error with wording” to achieve the desired legend placement,
but still found it difficult to control spatial details.
Multimodal Iteration Patterns. In the multimodal condition, partici-
pants frequently adopted a “sketch-and-adjust” workflow: they would
first sketch the overall layout visually, then use direct manipulation to
fine-tune elements, and occasionally supplement with text for precise
specifications. This allowed for rapid, incremental adjustments and
immediate feedback, which participants found intuitive and engaging.
Cognitive Load and Focus. We observed that in the text condition,
participants spent more time planning and formulating prompts, while
in the multimodal condition, their attention shifted to manipulating
visual elements and interpreting system feedback. Several participants
(e.g., P3, P5) noted that visual interaction “felt more like designing”
and reduced the need to mentally translate visual ideas into words.
Emergent Best Practices. Some participants developed hybrid strate-
gies, such as using visual prompts for layout and text for data mapping,
sketching with text annotation, suggesting the value of combining
modalities. Others suggested features like “importing external image”
and “template-based sketching” to further streamline the workflow.

These observations reveal that multimodal prompting not only im-
proves expressiveness and efficiency for complex tasks, but also sup-
ports more natural and flexible authoring behaviors.



8 DISCUSSION

The results of the case studies and user evaluation provide valuable
insights into the design of multimodal prompting approaches for visu-
alization authoring tasks. We summarize the implications as follows.

8.1 Strengths and Limitations of Prompting Modalities
Our study findings highlights how each modality contributes to the
overall authoring experience and where their boundaries lie.
Visual prompts facilitate LLMs in understanding user intent and
improve generation accuracy. Our study showed that visual prompts
significantly enhance how LLMs interpret user intentions, especially
for complex visualization requirements. Sketches that conveyed chart
types, element positioning, and visual encoding relationships led to
visualizations that more closely matched user intentions compared to
text-only prompts. Visual inputs provided direct spatial representations
that text often struggled to communicate clearly, reducing ambiguity
and eliminating the need for LLMs to make multiple inferences that
could lead to misinterpretations. This finding demonstrates the po-
tential of visual prompts to improve the accuracy of LLM-generated
visualizations, particularly in scenarios where users need to convey
intricate visual intent or spatial relationships.
Visual inputs reduce the effort for expressing sophisticated visual-
ization demands. Our study revealed that visual prompts significantly
reduce the cognitive burden of articulating complex visualization re-
quirements. Participants utilized visual prompts more intuitively and
efficiently than text prompts when communicating spatial relationships,
layout preferences, and design modifications. This was especially no-
table for tasks requiring precise element positioning such as legends or
annotations, where a simple visual indicator achieved what would other-
wise necessitate multiple textual exchanges. The multimodal approach
allowed users to express intent through the most natural modality for
each visualization aspect, reducing the overall effort required.
Text prompts excel in parameter specification and conceptual guid-
ance. While visual prompts suit spatial relationships, text offers greater
efficacy for precise parameter values and high-level analytical goals.
Participants exhibited increased efficiency when textually specifying
numeric parameters (e.g., “set opacity to 0.7” or “use a logarithmic
scale for the y-axis”) rather than drawing visual representation of these
concepts. Similarly, text proved more effective for communicating
abstract visualization objectives like “show the correlation between
variables” or “highlight the outliers”. Future systems should integrate
text prompts for precise specifications with visual inputs for spatial and
design elements, establishing a complementary multimodal framework.
Direct manipulation enables efficient iterative refinement. Our
study demonstrated that direct manipulation of visualization elements
significantly enhanced the refinement process. Participants strongly
preferred this iterative design paradigm, which enabled them to progres-
sively refine existing visualizations through visual interactions rather
than verbal descriptions. This was particularly evident in tasks requir-
ing fine-grained adjustments such as repositioning legends, modifying
mark properties, or altering axis scales, as visual actions like drawing
arrows for movement or crossing out elements for removal were far
more efficient than composing detailed textual instructions. Therefore,
it is beneficial to integrate direct manipulation operations along with
multimodal inputs, which can provide seamless transitions between
creation and iteration phases with appropriate visual guidance.
Lengthy instructions lead to LLM misinterpretation regardless of
prompt modality. We observed that complex instructions with multiple
requirements frequently resulted in partial implementation by the LLM,
with certain aspects prioritized while others were overlooked. This
phenomenon was pronounced when instructions contained conflict-
ing or ambiguous specifications. For example, detailed visualization
requirements with multiple design constraints often led to selective
implementation. Similarly, visual prompts with excessive annotations
overwhelmed the LLM’s processing capacity. Our findings indicate that
concise, focused instructions produce superior outcomes, and complex
requirements should better be decomposed into sequential interactions
rather than consolidated within a single prompt.

8.2 Opportunities in Multimodal Prompting

We further explore the broader opportunities that multimodal prompting
brings to visualization authoring and implications for future research.
Balance between text and visual prompts. Our study highlighted
the importance of finding an optimal balance between text and visual
prompts for effective visualization authoring. We observed that partic-
ipants typically adopted a complementary approach, leveraging each
modality’s inherent strengths rather than relying exclusively on a single
one. Text prompts were utilized predominantly for data transforma-
tions, parameter specifications, and high-level objectives, while visual
prompts proved superior for communicating nuanced visual details
involving layout or spatial relationships. This complementary pattern
emerged consistently across participants and tasks, which inspires fu-
ture work to facilitate fluid transitions between modalities, rather than
treating them as discrete interaction paradigms and optimizing each
modality of prompts [6] in an isolated manner.
Visual context can improve LLMs’ reasoning abilities. During our
experiments, LLMs exhibited enhanced reasoning capabilities for vi-
sualization tasks when provided with rich visual context. This could
be attributed to the integrated visual prompts that potentially improved
LLMs’ comprehension of current visualization states and users’ modi-
fication intentions. Specifically, when users made incremental changes
to existing visualizations, LLMs could successfully interpret visual
context and applied appropriate transformations. However, we also
noticed that LLMs occasionally misinterpreted ambiguous visual cues,
especially when they were arbitrary scratches or using obscure colors.
Therefore, future research is needed to make LLMs’ visual reasoning
capabilities more robust for visualization-specific tasks through model
training, fine-tuning or prompt engineering techniques.
Multimodal prompt design can inspire brainstorming. Some par-
ticipants commented that multimodal prompting facilitated creative
visualization exploration and ideation. Unlike text-only approaches
that require users to have a clear visualization concept from the start,
visual prompts allowed for more exploratory and iterative design pro-
cesses. Participants frequently started with rough sketches to express
general concepts, then progressively refined them through a combi-
nation of visual and textual inputs. Such a brainstorming paradigm
was particularly well-suited for complex visualization tasks, where the
optimal design was not immediately apparent. Moreover, the ability
to quickly sketch alternative designs and receive immediate feedback
from the system encouraged participants to explore diverse visualiza-
tion options rather than settling for their first idea. Future work could
further enhance this procedure by providing features for quick sketch-
ing, visual variations, and easy comparison of alternative designs. Our
findings can also inform the application of multimodal prompting for
other creative domains, such as writing [17] and image painting [11].

9 CONCLUSION

In this paper, we present VisPilot, a novel approach that addresses
the fundamental limitations of text-only prompts for visualization au-
thoring with large language models. Through our empirical study,
we identify three key challenges in text-only prompting: limited ex-
pression of visual intent, inadequate guidance of LLM behavior, and
misaligned human-LLM design preferences. Our multimodal prompt-
ing framework directly addresses these limitations by enabling users
to express their visual intent through complementary visual and tex-
tual inputs. We develop the VisPilot system and conduct two case
studies and a formal user study to validate its effectiveness. The re-
sults of studies demonstrate that multimodal prompting outperforms
text-only prompting in terms of accuracy in task completion and user
satisfaction. These findings provide strong evidence that incorporating
visual prompts can effectively enhance the LLM-based visualization
authoring workflow. As multimodal large language models continue to
evolve, we believe the paradigm of multimodal prompting will become
increasingly important for visualization authoring scenarios, making
data visualization more accessible while preserving the expressivity
and control that visualization authors require.
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