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Abstract
Large language models (LLMs) have gained popularity in various fields for their exceptional capability of generating
human-like text. Their potential misuse has raised social concerns about plagiarism in academic contexts. However,
effective artificial scientific text detection is a non-trivial task due to several challenges, including 1) the lack of a
clear understanding of the differences between machine-generated and human-written scientific text, 2) the poor
generalization performance of existing methods caused by out-of-distribution issues, and 3) the limited support for
human-machine collaboration with sufficient interpretability during the detection process. In this paper, we first identify
the critical distinctions between machine-generated and human-written scientific text through a quantitative experiment.
Then, we propose a mixed-initiative workflow that combines human experts’ prior knowledge with machine intelligence,
along with a visual analytics system to facilitate efficient and trustworthy scientific text detection. Finally, we demonstrate
the effectiveness of our approach through two case studies and a controlled user study. We also provide design
implications for interactive artificial text detection tools in high-stakes decision-making scenarios.
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Introduction

The recent emergence of large language models (LLMs)
has significantly enhanced the diversity, control, and quality
of machine-generated text1,2. For instance, ChatGPT3

gained tremendous public attention for its ability to
generate plausible, coherent, and human-like text in a
conversational manner (or prompting4,5). Nonetheless, the
widespread accessibility of powerful LLMs has raised
concerns regarding their potential misuse, including the
propagation of fake news6,7, fraudulent online reviews8,
and social media spam9. These concerns are particularly
acute in academic and educational contexts10,11. Academic
conferences and journals such as ACL and ICML have
established strict guidelines for the cautious and responsible
use of LLMs12,13. In this paper, we focus on the detection of
scientific text, as there is an urgent need to prevent cheating
and maintain academic integrity.

Recently, much attention has been devoted to artificial text
detection in industry and academia. The growing demand for
detecting machine-generated text has led to the development
of several online tools (e.g., GPTZero14). Meanwhile,
academic research has proposed numerous detection
methods, including feature-based15,16 and transformer-
based11,17 models. While existing methods can achieve high
accuracy in specific domains such as fake news detection6,
they are less effective when applied to detect machine-
generated scientific text due to the following reasons.

Firstly, the critical distinctions between machine-
generated and human-written scientific text remain
underexplored. Prior findings10,18,19 are either not specific
to scientific text or lack comprehensive and quantitative

user studies. Understanding these differences is crucial for
designing effective detection algorithms and enhancing
human experts’ ability to identify suspect manuscripts.

Secondly, the performance of existing methods often lacks
generalizability due to out-of-distribution (OOD) issues.
Numerous LLMs can generate scientific text with varying
feature distributions that are difficult to distinguish using
a single detector, caused by diverse sampling methods of
LLMs15 or cross-domain adaptation issues11. Moreover,
different detectors might produce incorrect and conflicting
results when confronted with multiple scientific text of
unknown origins.

Thirdly, the incorporation of human agency is limited.
Recent studies10,20 have found that expert human reviewers
outperform automated detectors in identifying certain
shortcomings of machine-generated scientific text. This
suggests that integrating human experts’ prior knowledge is
promising for improving the fairness, interpretability, and
reliability of artificial text detection, as argued in 1,20,21.
However, current approaches such as GLTR22 lack sufficient
support for human-machine collaboration and interpretation
of machine learning (ML) models’ decisions. In high-stakes
decision-making scenarios like scientific text detection,
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solely relying on models’ decisions reduces the reliability
and trustworthiness of the detection process.

To address the aforementioned challenges, we first
conduct a formative study to understand the critical
distinctions and the corresponding statistical features
between machine-generated and human-written scientific
text, and then formulate design requirements through user
interviews. Our results show that, while knowledgeable
human experts can holistically identify machine-generated
scientific text, they seek evidence from ML models to
support their decisions. Therefore, we propose a mixed-
initiative workflow that combines human experts’ prior
knowledge with ML models trained using the identified
features. Our workflow presents text excerpts based on
feature similarities and ranks multiple ML models during
each iteration to mitigate the OOD issue when handling
multi-sourced text. It also provides multiple levels of feature
analysis leveraging explainable artificial intelligence (XAI)
techniques to enhance the interpretability and reliability
of the human-machine detection process. Accordingly, we
design and implement a visual analytics system. Case studies
and a controlled user study demonstrate the capability of our
approach in facilitating artificial scientific text detection.

In summary, the major contributions of this work include:

• A formative study that identifies critical distinctions
and summarizes design requirements for artificial
scientific text detection.

• A novel workflow and a visual analytics system that
combines human intelligence with machine learning
techniques to facilitate artificial text detection.

• Two case studies and a controlled user study
to demonstrate the effectiveness of our proposed
approach.

Related Work

Artificial Text Detection
Various techniques have been proposed to differenti-
ate between machine-generated and human-written text.
Crothers et al.1 presented a comprehensive review of auto-
matic detection of machine-generated text. Most existing
work can be broadly categorized into two groups: feature-
based methods and deep-learning-based methods.

Feature-based methods8,15,16,18,23 utilize statistical distinc-
tions between machine-generated and human-written text
to train ML models for classification. These statistical
features include basic features (e.g., word and sentence
length10,15), frequency features (e.g., TF-IDF24), fluency
features (e.g., Gunning-Fog Index and Flesch Index23), etc.
Perplexity, another metric used to measure the efficacy of
a model in predicting the next word in a sequence, is also
commonly adopted to identify machine-generated text10,18.
However, feature-based methods are hindered by different
sampling methods or model sizes6,25, whereas our proposed
approach incorporates multiple models with human expertise
to address these limitations.

Deep-learning-based methods7,11,17,20,26,27 utilize neural
networks or language models to differentiate between
machine-generated and human-written text. For instance,
Zellers et al.6 proposed the Grover model for generating

and detecting fake news, demonstrating the potential of
generative models in discrimination, which has also been
observed in other studies24,28. Fine-tuning approaches,
particularly those utilizing large bi-directional language
models like RoBERTa, still represent the state-of-the-art for
artificial text detection1,24. While cross-domain adaptation
has shown significant improvement with a few hundred
out-of-domain samples11, collecting balanced training data
for general-purpose detection models in real-life scenarios
remains a significant challenge1,21,29. Moreover, the black-
box nature of most deep learning models impedes their
adoption in high-stakes decision-making scenarios like
scientific text detection.

In addition to automatic detection approaches, empirical
research19,20,30,31 has investigated humans’ ability of
detecting machine-generated text. For instance, human
experts achieve high precision in detecting certain errors like
technical jargon19 and identifying fake scientific abstracts10.
Inspired by these findings and the concept of GLTR22

which incorporates human agency to facilitate detection, we
propose a mixed-initiative workflow that more effectively
integrates human intelligence.

Explainable Artificial Intelligence
XAI techniques aim to enhance the interpretability and
reliability of AI models, enabling humans to understand
how these models make their decisions. In the visualization
community, researchers have developed numerous XAI
systems, such as RuleMatrix32, CNNVis33, and CNN
Explainer34. Several surveys35–42 have also been proposed
to provide a comprehensive overview of XAI approaches,
including intrinsic and post-hoc interpretability43. Intrinsic
interpretability44–46 refers to ML models that can be
understood and explained directly from their design and
architecture, such as decision trees and generalized additive
algorithms. Visualization techniques have been proposed to
facilitate intrinsic interpretability. For instance, Dingen et
al.47 presented RegressionExplorer to interactively explore
logistic regression models in clinical biostatistics. Similarly,
Neto et al.48 proposed Explainable Matrix for interpreting
complex random forest ensembles. On the other hand,
post-hoc interpretability techniques49–53 are applied after
model training, specifically for black-box models like deep
neural networks that are not intrinsically interpretable. Such
methods are model-agnostic and can be utilized to explain
the decisions of any models. One of the typical approaches
is to train a surrogate model to approximate the outputs of
the original black-box model43. For instance, LIME51 trains
local surrogate models to explain individual predictions.
Similarly, SHAP (SHapley Additive exPlanations)50, which
is based on game theory54, has been widely applied in
various XAI systems55–57. In this work, we leverage SHAP
values to offer contribution-based explanations for models’
decisions in scientific text detection.

Mixed-Initiative Visual Analytics Systems
Initially introduced by Horvitz58, mixed-initiative systems
aim to enhance collaboration between humans and machines
in decision-making processes. In recent years, there has been
a significant amount of work in the visualization field related
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to mixed-initiative visual analytics systems59–69. These
systems leverage both human and machine intelligence to
explore and analyze complex data utilizing innovative visual
designs 70–76. For instance, Wall et al.77 proposed the
Podium system that enabled users to rank multi-attribute
data based on their holistic understanding and explore
their subjective preferences. Our work is also based on a
similar assumption derived from our formative study, that
knowledgeable human experts can only holistically identify
machine-generated scientific text and require evidence from
ML models to support their decisions. Additionally, Pister
et al.78’s work on integrating prior knowledge for social
network clustering has motivated our proposed workflow.
Unlike clustering, we focus on the binary classification task
of detecting artificial text.

Our work involves a binary labeling process, which
is similar to previous works on mixed-initiative labeling
systems. For instance, Felix et al.79 proposed an interactive
visual data analysis method to facilitate document labeling
with machine recommendations. Similarly, Choi et al.80

developed the Attentive Interactive Labeling Assistant to
visually highlight words and improve the efficiency of
document labeling. More recently, Alsaid et al.81 integrated
dimensionality reduction to develop an interactive method
for labeling video and image data more efficiently and
effectively. Furthermore, the visualization community has
explored visual-interactive labeling which combines VA with
ML techniques82–86. In contrast to prior works that primarily
focused on enhancing the effectiveness and efficiency of
the labeling process, we extend this line of research by
prioritizing the reliability of high-stakes decision-making
scenarios like scientific text detection.

Formative Study
Our workflow is designed for proficient researchers with a
deep understanding of their respective disciplines, typically
tasked with the critical appraisal and review of research
papers. We collected paired datasets related to visualization
research, and collaborated with visualization experts,
including senior PhD students, PostDocs, and editors of
relevant journals. The formative study spanned 4 months,
during which we conducted bi-weekly semi-structured
interviews with the experts to comprehend their primary
concerns regarding existing automatic detection methods
for scientific text. Through quantitative experiments, we
identified key statistical features that can distinguish
machine-generated text from human-written text. We
consolidated the design requirements and progressively
refined them based on user feedback to guide the design and
development of our proposed workflow and system.

Experiment Design
Data Collection. We define text excerpts as meaningful
segments of a complete article, such as subsections or
paragraphs. Specifically, we utilize scientific abstracts in this
work, due to their brevity and ability to encapsulate a paper’s
key points. We extracted the titles and original abstracts from
the dataset provided by Narechania et al.87. We then used
the metadata to generate abstracts through the official APIs
for ChatGPT and GPT-3 with the prompt ‘suppose you are

the author, write a short abstract for the scientific paper
titled with TITLE’. Given GPT-2’s comparatively weaker
generative capabilities, we used the first sentence of each
original abstract as a prompt. Therefore, we constructed three
paired datasets containing machine-generated and human-
written abstracts for the same title. The origin, size, and a
sample item of each dataset are shown in Tab. 1.

Participants. We recruited 12 researchers (E1-E12, 9
males and 3 females) from a local university. Each
participant has a minimum of 5 years’ experience in
conducting research on visualization, with 10 possessing
previous knowledge of utilizing AI tools (e.g., Grammarly88)
for proofreading or paraphrasing.

Settings. Based on previous literature10,15,19 and discus-
sions with experts, we identified three major dimensions of
distinctions, i.e., syntax, semantics, and pragmatics89, each
of which consists of several subcategories (Tab. 2). While we
acknowledge that we may not have exhaustively captured all
possible distinctions, we believe that our derived categories
offer valuable insights for future empirical research.

Procedure. We first introduced the study settings and
offered a comprehensive explanation of the meaning and
coverage of each distinction category. Upon ensuring that
the participants had familiarized themselves with the study,
we sampled 30 pairs (10 per dataset) of machine-generated
and human-written abstracts with the same title from our
datasets without specifying their labels. We then asked the
participants to rate the level of quality for each distinction
category of each abstract pair on a 7-point Likert scale
from 1 (low quality) to 7 (high quality). Finally, we
collected and analyzed their feedback and conducted a post-
study interview to comprehend their evaluation criteria for
machine-generated text.

Results Analysis
Figure 1 illustrates the average ratings of various distinction
categories used to evaluate machine-generated scientific text.
To determine the most important features for humans to
distinguish such text, we conducted pairwise comparisons
of ratings of abstract pairs within each distinction category
using a post-hoc Wilcoxon signed-rank test. If the
ratings of abstract pairs are significantly different, the
corresponding distinction category should be considered a
critical distinction, as participants can accurately compare
the quality of the scientific text in that category. Based on
our analysis of the results and post-study interviews with the
participants, we summarize our key findings below.

The Syntax dimension refers to the rules and patterns
of language that govern how words and sentences are
formed and organized. Human-written text received higher
ratings in 2/3 of the subcategories in this dimension.
Moreover, we observed significant differences in Text
Structure and Readability, but not in Grammatical Issues,
suggesting that machine-generated scientific text generally
exhibit grammatical correctness, but struggle with effective
sentence and paragraph organization, leading to suboptimal
communication of scientific ideas to readers. For instance,
some participants complained that the machine-generated
text were ‘very hard to follow sometimes’ (E3), which might
be attributed to issues such as ‘excessively long sentences’
(E3), ‘inconsistent use of verb tense’ (E2), or ‘overuse of
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Table 1. Descriptions of the three datasets we constructed.

Origin Size Sample Item

ChatGPT 2697 Deep Q-Networks (DQNs) have emerged as a powerful technique to solve complex decision-making problems. However, understanding the internal
workings of DQNs, especially regarding how different components interact with each other and the consequences of their settings, is a difficult task
due to the complex nature of these algorithms. In this paper, we present DQNViz, a novel visual analytics tool that facilitates the exploration and
analysis of DQNs. DQNViz provides useful visualizations that help analysts to understand each component of a DQN, as well as to identify issues that
can arise during training. DQNViz incorporates the state-of-the-art visualization techniques, such as Parallel Coordinates, Heatmaps, and Scatterplots
to explore the high-dimensional spaces of DQNs. We demonstrate the usefulness of DQNViz in two case studies using the Atari and OpenAI Gym
environments. Our experiments show that DQNViz is effective in providing insights into how different components of DQNs influence the learning
process, as well as for identifying problems such as overfitting, improper weight initialization, and dead nodes. The results of our evaluations indicate
that DQNViz is a valuable tool for deep learning practitioners seeking to understand DQNs better.

GPT-3 1598 This paper presents an experimental study of heat transfer and flow visualization of a swirling impinging jet on a flat surface using helicoid inserts. A
swirling impinging jet was generated using a circular jet plate with helicoid inserts and then impinged on a flat plate. The Reynolds number was varied
from 1,000 to 7,000, while the swirl intensity was kept constant. The results showed that the inserts significantly enhanced the heat transfer rate on
the flat plate surface and increased the average Nusselt number by about 30%. Additionally, flow visualization revealed that the inserted jets generated
a secondary flow field in the vicinity of the impingement surface, which could explain the improved heat transfer. The results of this study provide
useful information for the design of swirling impinging jets for enhanced heat transfer applications.

GPT-2 2590 Area-preserving maps are found across a wide range of scientific and engineering problems. However, existing mapping tools can either be manually
generated using complex manual processes or, instead, automatically generated using computer models. Here, we present an algorithm to automatically
construct a large volume-preserving aerial map, with the same level of accuracy and resolution, that is found in any topographic or geostatistical
database. A comparison of the quality of existing ground-based and air-based maps of the Earth with the proposed methodology is presented, with
results, using the results of the two map projects as models, being discussed. The proposed system enables mapping in the air at high resolution
for thousands of kilometres, far beyond existing and anticipated aerial mapping capabilities. The proposed algorithm can be applied in large-scale
multi-objective or multi-objective-modest surveys. The algorithm operates over either satellite- or local-based aerial mapping, as is found in both the
USA and China. The proposed system permits the construction of an aerial mapping of a large area that exists in current terrestrial maps as well. A
wide range of uses is considered, including the study of the Earth’s surface, as well as of the ground-based, hydrological and geological context and
the development of aerial navigation systems.

Table 2. Summary of distinctions between machine-generated and human-written scientific text.

Dimension Subcategory Description Features

Syn
tax

Grammatical Issues The correctness and accuracy of using words, phrases and clauses in a sentence Part-of-Speech Tag Frequency, Punctuation Fre-
quency

Text Structure The organization and arrangement of sentences and paragraphs in a text Paragraph/Sentence Length, Word/Sentence Count,
Words per Sentence

Readability The ease of reading and understanding the text Gunning-Fog Index, Flesch Reading Ease

Sem
an

tic
s Lexical Issues The choice and usage of words that convey the intended meaning and tone of a text Google’s Top Word Frequency, TF-IDF, NER Fre-

quency

Consistency The agreement and harmony of words, phrases and sentences in a text Average Cosine Similarity between Sentence and Title

Coherence The logical connection and relation between sentences and paragraphs in a text Average Cosine Similarity between Sentences

Prag
mati

cs

Redundancy The unnecessary repetition of information in a text Unigram/Bigram/Trigram Overlap of Words/PoS Tags

Writing Style The distinctive manner of expressing ideas, opinions or emotions in a text SciBert 90 Embedding

Self-Contradiction The inconsistency or conflict between different parts or aspects of a text Not Applicable

Commonsense The general knowledge or understanding that is expected from the reader/writer of a text Not Applicable

Factuality The level of accurate and verifiable information in a text Not Applicable

Specificity The level of detail in a text to support the main points Not Applicable

passive voice’ (E9). In contrast, human-written scientific
text usually have a more structured presentation, facilitating
better understanding and interpretation of the content.

The Semantics dimension refers to the meaning and
interpretation of words and sentences in context. Human-
written text received higher ratings in all subcategories in
this dimension. Also, significant differences were observed
in all three subcategories: Lexical Issues, Consistency,
and Coherence, indicating that machine-generated scientific
text can be easily distinguished by human experts in
terms of semantics. Almost half of the participants (5/12)
reported inconsistencies between the title and abstract and
incoherencies between sentences. For instance, E4 noted
that ‘the title is related to time-varying data analysis
while the entire abstract keeps talking about focal point
extraction’, while E11 observed that ‘most generated
text were not logically coherent due to unexpected or
unreasonable expressions’. Additionally, for Lexical Issues,
some participants complained about ‘the lack of lexical

diversity’ (E6, E8) and ‘informal use of certain words’
(E2) in machine-generated text. These findings confirmed
previous literature10 that suggested machine-generated
scientific text still struggled with semantic consistency and
coherence when conveying complex ideas and insights.
Interestingly, although most participants did not detect any
misspellings or vocabulary mistakes, those who were native
English speakers all agreed that machine-generated text
sounded ‘more natural’ (E6) due to ‘a better choice of
vocabulary’ (E7). This may be attributed to the use of
reinforcement learning from human feedback (RLHF)91 in
LLMs like ChatGPT during training, enabling them to sound
more human-like. Future research is necessary to investigate
this further.

The Pragmatics dimension refers to the purpose and effect
of language in communication and interaction. Human-
written text received higher ratings in all subcategories in this
dimension, particularly in terms of Writing Style and Speci-
ficity. Additionally, significant differences were observed in
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Figure 1. Average ratings of distinction categories on a 7-point Likert scale (∗ : p < .05), where error bars represent 95%
confidence intervals.

Redundancy, Writing Style, Factuality, and Specificity, but
not in Self-Contradiction and Commonsense. Participants
expressed dissatisfaction with machine-generated text due to
‘inadequate details in background, motivation, method and
evaluation’ (E2) and ‘low formality regarding the overall
writing style’ (E7). On the other hand, some participants
noted that ‘longer and more detailed generated text were
often less precise and coherent’ (E5). Our findings aligned
with previous literature that machine-generated text were
limited due to a ”lack of purpose and functionality”15. Nev-
ertheless, participants did not report errors related to Self-
Contradiction and Commonsense, contradicting findings in
19. We attribute this to two primary reasons. First, our
datasets mostly comprise short text excerpts (less than 250
words), which are less likely to contain self-contradictions
compared to longer text. Second, scientific text generally
contain less commonsense knowledge than fake news92 or
online reviews21, resulting in a lower likelihood of common-
sense errors.

In summary, we explored the critical distinctions that
human experts rely on to differentiate between machine-
generated and human-written scientific text in terms of
syntax, semantics, and pragmatics. Results revealed that
participants rated human-written scientific text higher
in 11/12 of the distinction categories, and significant
differences were observed in 9/12 of the categories,
providing empirical evidence that a gap still exists between
human-written and machine-generated text in scientific
writing10. The derived critical distinctions were then used to
identify key statistical features (Tab. 2) informed by previous
literature10,15 to train ML models for our proposed workflow
(Sec. Workflow & System Design).

Design Requirements
The experiment revealed that human experts could holisti-
cally detect machine-generated scientific text based on the
quality of critical distinctions, but may not understand the
statistical features contributing to their decisions. To this end,
we aim to design a mixed-initiative workflow that incor-
porates both human and machine intelligence and supports
interpretation of ML models to enhance the effectiveness and
efficiency of the detection process. Throughout the formative
study, we solicited input from the experts on their envisioned
workflow for identifying fake scientific text, their perspec-
tives on existing automatic detection methods, and their
requirements for a detection process involving human inter-
vention. Subsequently, we summarized the insights obtained
to establish a comprehensive set of design requirements.

R1: Support adequate human involvement. In the
context of scientific text detection, our experts have raised
concerns about the limited or non-existent incorporation
of human agency in existing artificial detection methods.
This inadequacy leads to decreased efficacy, particularly
in scenarios requiring domain expertise for reliable and
trustworthy decision-making. To address this issue, our
experts suggested sufficient integration of their prior
knowledge into the detection process, and highlighted the
significance of interactive visualizations to facilitate effective
human-machine collaboration. Besides, the depth of domain
expertise and personal preferences can differ among experts
- some might focus on refining their detection capabilities,
while senior experts might aim at enhancing detection
efficiency. As such, our workflow should support sufficient
human involvement through a mixed-initiative procedure and
cater to diverse detection needs.

R2: Integrate decisions from multiple ML models.
Although experts can generally differentiate between
machine-generated and human-written scientific text, they
recognized the potential value in using existing ML models
to complement and augment their judgments. As numerous
detection approaches have been proposed recently, our
experts hoped to leverage multiple ML models to enhance
their decision-making process, similar to ensemble learning
techniques. However, the varying performances of different
models under different conditions present a challenge in
selecting the most appropriate model for a specific use
case. Therefore, our workflow should integrate multiple ML
models and provide a mechanism for experts to select the
most reliable model for their needs with ease.

R3: Explain the decisions of ML models. One of
the major concerns raised by our experts is the lack of
interpretability in most black-box detection models. In
high-stakes decision-making scenarios like scientific text
detection, editors and reviewers must thoroughly understand
the reasons behind ML models’ decisions to identify
fake text to ensure academic integrity and credibility.
Furthermore, our experts pointed out that contribution-based
explanations alone may be insufficient to fully comprehend
models’ decisions, especially when typical normal feature
values are unknown. Accordingly, it is essential to employ
XAI techniques along with cohort-level feature analysis to
enhance the interpretability and reliability of our workflow,
in line with the recommendations of our experts and previous
research literature1.

R4: Analyze multiple text effectively and efficiently.
In the context of scientific text detection, journal editors
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Figure 2. The proposed workflow comprises four iterative stages: (A) human experts provide weak annotations for current text
excerpts based on their prior knowledge, (B) ML models are run and ranked based on their level of prior knowledge matching, (C)
human experts review and confirm results for current text excerpts based on the analysis of models’ and their own decisions, and
(D) next text excerpts are recommended based on their weighted similarities to current text excerpts.

are often presented with a large number of submitted
papers (e.g., 50) and are required to identify the potentially
suspicious text excerpts in a timely manner. However,
existing industry products for artificial text detection (e.g.,
GPTZero) only allow users to upload text one by one, which
is time-consuming and labor-intensive. While it is possible
to deploy an ML model offline and process multiple text
simultaneously, our experts have found it challenging to
quickly determine the most effective model to use. Moreover,
as artificial scientific text can be generated by different
language models, it is difficult for experts to identify which
text might originate from the same source beforehand,
making it impractical to apply the most appropriate model to
each one of them. Therefore, our workflow should facilitate
effective and efficient detection of multiple scientific text.

Workflow & System Design
We present a mixed-initiative workflow (Fig. 2) that
integrates human experts’ prior knowledge with multiple ML
models for artificial scientific text detection to fulfill the
design requirements. In this section, we first describe the
four stages of our proposed workflow. Then, we introduce the
visual designs and interactions of our visual analytics system
(Fig. 3) based on the workflow.

Workflow
Human Evaluation In the first stage, users are presented
with scientific text excerpts to review (Fig. 2A). At the
entry point of the workflow, these excerpts are either
manually selected by the users based on their familiarity
with the topic, or recommended randomly by the system.
However, in subsequent iterations of the workflow, the
selection of excerpts is automated based on the weighted
similarity of feature distribution and contribution (Sec. Text
Recommendation). We ask users to represent their prior
knowledge as weak annotations (R1), that is, assigning a
label of Real or Fake to each text excerpt based on their
own judgments. While previous literature and our formative
study have demonstrated the abilities of human experts
and ML models to distinguish between machine-generated
and human-written scientific text, we believe that they are
complementary. These weak annotations can be supported
and refined by ML models in subsequent stages of the
workflow. Additionally, we employ various visualizations

such as area charts and highlightings to enable users to
interactively analyze features (R1). Although users may
not initially understand the meaning and effects of each
feature, we posit that after several iterations, they can
gradually acquire knowledge of key features and improve
their detection ability by integrating their prior knowledge
with feature analysis. Notably, users can also apply the
outputs of an ML model as weak annotations in batches if
they feel confident about its performance on the current text
excerpts to increase efficiency (R4).

Model Inspection In the second stage, we incorporate
machine intelligence by comparing human experts’ decisions
with those made by ML models (Fig. 2B). First, we run
all models on the current text excerpts to obtain their
classification results (R2). These models are trained using
the statistical features derived from our formative study to
make their behavior and performance more understandable
to human experts, as these features are closely related to the
critical distinctions identified by human experts. However,
different ML models may be trained on different datasets,
resulting in varying performances when detecting machine-
generated text from different origins. For instance, a model
trained on text generated by GPT-3 may not accurately
detect text generated by ChatGPT. As human experts can
holistically identify machine-generated scientific text, we
rank the ML models based on their level of prior knowledge
matching to human experts, which is computed as

LevelofPKMatching = (1− ωg) ∗Rlocal + ωg ∗Rglobal

(1)
where Rlocal and Rglobal indicate the rate which the
classification results of each model match those of the
user in the current iteration and all previous iterations,
respectively. Rglobal is weighted by a parameter ωg , which
can be adjusted by the user at any point of the workflow
according to their preferences and requirements (R1). Lower
values of ωg indicate a focus on finding the best model for
the current iteration, while higher values indicate a broader
focus on the entire detection process. Notably, We rank
ML models not only to meet users’ needs for selecting
the most appropriate model (R2), but also to form positive
first impressions which make it more likely for users with
domain expertise to trust and use the intelligent system in
the future, as suggested in 93. Finally, we use SHAP values50
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to generate contribution-based explanations of statistical
features to facilitate interpretability (R3).

Human Confirmation In the third stage, users can review
the list of ML models ranked by level of prior knowledge
matching (Fig. 2C). The most appropriate model for the
current iteration (either globally or locally) should ideally
be ranked high. Users can validate their weak annotations
by investigating the feature distributions and contributions
(R1). While the top-ranked model is initially selected for
analysis, users are free to explore any other models to gain
insights into why a particular model performs poorly or to
validate their prior knowledge. If all models fail to match
users’ prior knowledge well, this may be due to inadequate
training of the models or lack of expertise of the users.
In such cases, users may refine their own prior knowledge
or assess the usability of the models. Subsequently in this
stage, users are responsible for resolving any conflicts arising
from different models’ decisions and confirming the final
results for the text excerpts (R1, R2). We provide effective
visualizations to assist users in identifying models’ decisions
that contradict their weak annotations, and to enable model-
wise and instance-wise comparisons for each text excerpt
(R1).

Text Recommendation In the fourth stage, we perform
similarity calculation to recommend text excerpts for the next
iteration of the workflow (Fig. 2D). We calculate the average
cosine similarity between each remaining text excerpt and
the current text excerpts as follows

simi =
1

n

n∑
j=1

(
ωd ·

fd,j · fd,i
∥fd,j∥∥fd,i∥

+ (1− ωd) ·
fc,j · fc,i

∥fc,j∥∥fc,i∥

)
(2)

where n indicates the iteration size, and fd,i and fc,i indicate
the feature distribution and contribution vector of the i-th text
excerpt, respectively. fd,i and fc,i are defined as

fd,i =


fd,i1
fd,i2

...
fd,im

 (3)

fc,i = SHAP(fd,i) (4)

The elements of fd,i are the key statistical feature values
identified in our formative study (Tab. 2). And the elements
of fc,i are SHAP values for the i-th text excerpt, which
quantify the local contributions of each feature to the
detection model’s classification result. As SHAP values
are model-specific, we use the top-ranked model in the
current iteration to calculate fc,i. The similarity of feature
distribution is weighted by a parameter ωd. Higher values
of ωd indicate a preference for handling text excerpts
generated by similar LLMs first, as they typically have
similar feature distributions. Conversely, lower values of ωd

indicate a preference for handling text excerpts treated by
similar model strategies first, which have similar feature
contributions. As suggested by Collaris et al.56, model
strategies reflect different treatments of ML models to the
input data. In the context of scientific text detection, we

formulate model strategies as various types of characteristics
of text. For instance, some text excerpts may be classified
as machine-generated mainly due to their short paragraph
length, while others may be due to their abnormal writing
styles. Users can adjust ωd freely throughout the workflow
to balance the handling of text excerpts based on their
origins and characteristics, catering to diverse detection
needs (R1). After the similarity calculation, we select the text
excerpts with the highest similarities among the remaining
ones for the next iteration. Iteratively presenting several
text excerpts enhances the effectiveness and efficiency
of detecting multiple text excerpts (R4), since users can
conveniently adopt the most appropriate model of the current
iteration to the next one without much performance loss.
Additionally, if users are unsatisfied with the recommended
text excerpts, they can reduce the iteration size to achieve a
more fine-grained detection process.

The fourth stage marks the end of an entire iteration,
and the workflow continues to loop from the first stage
until all text excerpts are reviewed and confirmed by the
user. Through an iterative manner, the workflow facilitates
the effectiveness and efficiency in detecting multi-sourced
scientific text, and provides sufficient support for human-
machine collaboration and interpretation of ML models’
decisions, satisfying our derived design requirements.

User Interface
Text Overview The Text Overview (Fig. 3A) panel provides
an interactive tabular layout that shows the text excerpts
in the current iteration of the workflow. It allows users
to compare and analyze decisions made by themselves
and different models either in a model-wise (vertically) or
instance-wise (horizontally) manner. Each text excerpt is
encoded as a circle with different colors representing their
labels, and the predicted probability of each model is shown
as the size of the fan-shaped area inside each circle. Models
are ranked from left to right based on their level of prior
knowledge matching in the current iteration, and users can
click on each column to focus on the corresponding model.
Besides, clicking on each row allows users to analyze and
annotate the corresponding text excerpt. The current focused
text excerpt or model is highlighted in light grey. To the
right of each model’s name is a small barchart ( ) indicating
the Global Match Rate and Local Match Rate. Additionally,
users can apply the outputs of a model as weak annotations
by clicking on the ‘batch apply’ icon ( ) to the left of
each model’s name. Above the tabular layout are the number
of labeled text excerpts, current iteration status, and model
ranks, and below are sliders for adjusting the workflow
parameters (Sec. Workflow) and a button for submitting
decisions. Notably, changes to the parameters will take effect
in the next iteration.

This panel serves different purposes depending on the
stage of the workflow. In the first stage, the circles
representing models’ decisions are not displayed (unless
users wish to ‘batch apply‘ the outputs of a particular model),
as users need to provide weak annotations based on their own
prior knowledge. In subsequent stages, all results of models
are displayed, as users need to compare and confirm the final
results for the current text excerpts.
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Figure 3. The user interface of the visual analytics system. (A) The Text Overview panel allows users to provide weak annotations
for text excerpts based on their prior knowledge and compare them with multiple ML models’ decisions. (B) The Feature Exploration
panel presents an overview of the feature distribution and contribution of all text excerpts to be detected. (C) The Text Analysis
panel offers contribution-level, distribution-level, and excerpt-level feature analysis to facilitate an effective and interpretable
detection process. By iteratively interacting with the three coordinated panels, users can perform effective and efficient detection of
multiple scientific text through a mixed-initiative workflow.

Feature Exploration The Feature Exploration (Fig. 3B)
panel allows users to gain an overview of the feature
distribution and contribution of all text excerpts to be
detected. It consists of two UMAP94 projections: one
for feature distribution values and the other for feature
contribution values. Text excerpts are represented as
colored dots according to their corresponding labels, with
unlabeled excerpts being depicted in grey. Those in the
current iteration are highlighted in red, and users can
manually select other excerpts to review by brushing.
As discussed in Sec. Text Recommendation, the feature
distribution projection visualizes text excerpts by their
generative sources (i.e., various LLMs), while the feature
contribution projection depicts these excerpts based on
different model strategies of the top-ranked detection
model in the current iteration, reflecting distinct text
characteristics. Specifically, clusters in feature distribution
typically correspond to text generated by similar LLMs,
while clusters in feature contribution indicate text treated
by similar model strategies. Notably, clusters in the two
projections generally do not match with each other as there
is usually no explicit relationship between feature values and
feature contribution values. By examining the 2D projections
of feature distribution and contribution, users can quickly
identify patterns related to different language models or
model strategies, as well as the relationship between text
excerpts across consecutive iterations. For instance, if the
text excerpts in the current iteration are similar to those
in the previous iteration in terms of proximity in feature

distribution, users may choose to ‘batch apply’ the outputs
of the previous best model to improve efficiency.

Text Analysis The Text Analysis (Fig. 3C) panel provides
three levels of feature analysis for the selected text excerpt in
the Text Overview panel.

Contribution-level analysis. As shown in Fig. 3C2, we
display each distinction category in a grouped style similar to
tab groups in web browsers. This facilitates easy comparison
and analysis of the impact of different features. Each feature
dimension is presented as a separate tab using different
colors, and comprises several subcategories represented by
sub-tabs, which are outlined in the same color as their
corresponding dimension for clarity. Users can sort the
feature dimensions and subcategories on the tab strip, and
can expand or collapse a feature dimension by clicking on its
tab. Clicking on a subcategory tab highlights it and allows
users to view the associated feature details presented as
multiple feature cards (Fig. 3C3).

We calculate the aggregate contribution values of each
feature dimension or subcategory by summing up the
SHAP values of the included features54,55. The contribution
values for each feature dimension and subcategory are
depicted as a vertical bar below each corresponding tab
(Fig. 3C2), with lighter colors indicating subcategories and
darker colors representing dimensions. For each included
feature, its contribution value is shown as a horizontal bar
atop the corresponding feature card (Fig. 3C3). Notably,
negative contribution values are indicated by striped bars.
By presenting contribution values in a coarse-to-fine-grained
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manner, we enable users to analyze features at different
levels of granularities catering to their analysis goals. For
example, some users may only be interested in understanding
the most critical distinctions affecting the models’ decisions,
while others may wish to delve deeper to gain a more
comprehensive understanding of the underlying statistical
features’ effects.

Distribution-level analysis. It may be insufficient to only
display the numerical feature values and their contribution
values for users to comprehend and build trust in models’
decisions, as some statistical features may be unfamiliar to
them (e.g., Gunning-Fog Index). To this end, inspired by
55, we adopt reference values, which are calculated from
a relevant cohort of text excerpts. We obtain the 500 most
similar text excerpts to the current selected one from the
focused model’s training dataset based on cosine similarities
between their feature distribution vectors. Users can also
manually select a more fine-grained cohort by brushing in the
UMAP projection of the default relevant excerpts in Cohort
Selection (Fig. 3C3left).

The statistical features include numerical values and
multidimensional vectors, which are displayed in Feature
Comparison (Fig. 3C3right). We employ area charts
(Fig. 3C3right) to visualize the distributions of numerical
features (e.g., paragraph length) and violin charts (Fig. 4C2)
to visualize the distributions of vector elements for low-
dimensional features that consist of meaningful elements
(e.g., part-of-speech tag frequency). For high-dimensional
features, such as embeddings from a transformer model, we
leverage scatterplots to visualize the UMAP projection of
the feature vectors (Fig. 5B). The same color encodings as
before are used to depict machine-generated and human-
written text. Moreover, we indicate feature values of the
current selected text excerpt with a vertical line in area charts,
a horizontal line in violin charts, and an arrow in scatterplots.
Reference values are determined by lower and upper bounds
(for numerical features) or clusters (for embedding features)
of the relevant cohort. By comparing the current feature
value with its corresponding reference values in context,
users can determine whether the text excerpt is abnormal in
terms of each feature. For instance, if the Gunning-Fog Index
value of the current text excerpt is significantly lower than
those of similar human-written text, it may indicate that the
text is likely machine-generated.

Excerpt-level analysis. Some features are calculated
based on word frequencies in the text excerpt, such as part-
of-speech tag frequency. Users prefer to understand these
features in the context of the original text. Therefore, we
visually associate these features with the corresponding raw
text. As shown in Fig. 3C1, by clicking on a feature element
in the violin charts, users can highlight the associated
words in the raw text. This allows users to gain a deeper
understanding of the correlations between statistical features
and specific characteristics in the original text. By analyzing
back and forth between features and text, users can gradually
learn from the model’s decisions and explanations and
become more attentive to those characteristics in future
detection processes. However, some features, such as
average sentence length, are relative to the entire text rather
than individual words. Therefore, we do not provide any

Table 3. Accuracy scores of the ML models trained and
evaluated on datasets of different LLMs.

Training Data

Test Data

ChatGPT GPT-3 GPT-2 Combined

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

ChatGPT 0.953 0.953 0.891 0.891 0.576 0.589 0.794 0.807

GPT-3 0.783 0.796 0.975 0.975 0.443 0.393 0.697 0.714

GPT-2 0.530 0.697 0.473 0.381 0.988 0.987 0.692 0.794

Combined 0.816 0.817 0.908 0.914 0.865 0.869 0.856 0.859

interactions for reference, and users should observe their
distributions as a whole.

Notably, feature contribution values are not displayed in
the first stage of the workflow, whereas in subsequent stages,
feature distribution and contribution values are subject to the
current focused model.

Evaluation

Settings
Training detection models. Feature values were computed
for text excerpts within each dataset outlined in Table 1,
utilizing the statistical features specified in Table 2.
Subsequently, three LightGBM models95 were trained to
classify machine-generated and human-written scientific text
across these datasets. An additional LightGBM model was
trained on a combined dataset, consisting of 500 randomly
selected text excerpts from each original dataset, totaling
1500 samples. Due to their relatively small size, datasets
were divided into a 70% training set and a 30% test set,
with k-fold cross-validation applied to the training set. It is
important to note that the selection of detection models does
not influence our proposed workflow, which is adaptable to
any feature-based detection models. We chose LightGBM
for its high efficiency and accuracy. Following the training
phase, each model was applied to classify text excerpts
within all four datasets. SHAP values were then calculated
for each excerpt for feature contributions, based on each
model’s detection results. These feature distribution and
contribution values were stored offline to support the visual
analytics system.

Evaluating detection models. Table 3 shows that the
accuracy scores of the detection models are high when
trained and evaluated on the same dataset, but their
performance decreases across different datasets due to the
OOD issue mentioned earlier. Additionally, the detection
model trained on the combined dataset performed relatively
well on all four datasets, but not optimally.

Based on these models and our visual analytics system,
we conducted two case studies and a controlled user study to
demonstrate the effectiveness of our approach.

Case Study 1: Origin-based Detection
E1 aimed to review 100 manuscripts and identify which ones
were likely to be machine-generated. With over 10 years of
research experience, E1 felt confident in his ability to detect
machine-generated scientific text. He hoped to improve his
efficiency in detecting multiple text excerpts and to seek
evidence from ML models to support his own decisions.
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Explore feature distribution and contribution. E1
began by checking the Feature Exploration panel and
observed three clusters in feature distribution (Fig. 4A),
indicating that the corresponding text excerpts likely shared
similar origins. E1 recognized that each cluster of text
excerpts could be detected using the same ML model for
optimal performance. He then decided to adopt an origin-
based procedure and set Global Match Weight to 0.1 to
direct the system to present the locally optimal model in each
iteration. This allowed him to focus solely on the top-ranked
models and avoid analyzing all the results tediously.

Provide weak annotations. At the start of the workflow,
the system automatically presented the text excerpts for the
first iteration, using the default iteration size of 10. All of
these excerpts were from the cluster located in the upper right
corner of feature distribution. E1 provided weak annotations
for each text excerpt based on his prior knowledge. However,
he did not extensively analyze the features, as they were not
familiar or intuitive to him at the moment. E1 hoped to delve
deeper into these features once the models’ decisions were
displayed.

Review models’ decisions. Upon submission of the weak
annotations, all four models were run. As shown in Fig. 4B,
Model 3 was the top-ranked model with a local match rate of
100%. E1 then selected each text excerpt to investigate their
feature distribution and contribution values. The significant
contributions were mainly made by two subcategories:
Coherence and Grammatical Issues. In the Coherence
subcategory, the most important feature was Average Cosine
Similarity between Sentences whose value was obviously
lower than the corresponding distribution of human-written
text (Fig. 4C1). This finding was consistent with E1’s own
evaluation, who commented that the paragraph was not
logically connected. In the Grammatical Issues subcategory,
the primary feature was Punctuation Frequency, which is
a multidimensional feature displayed using a violin chart.
E1 discovered that the frequencies of colons and quotation
marks were far beyond the reference value range of human-
written scientific text (Fig. 4C2), indicating that the text was
likely machine-generated. E1 confirmed this observation,
noting that scientific abstracts generally do not contain such
punctuation.

Re-adjust similarity calculation strategy. After com-
pleting the first iteration, the system presented another 10
text excerpts for the second iteration. However, E1 noticed
that they were not in the same cluster as before. This was due
to the default value of Feature Distribution Weight being set
to 0.5, which did not prioritize similar text excerpts. There-
fore, E1 manually re-selected the text excerpts and adjusted
the parameter to 0.9 to ensure the system recommended text
excerpts from similar origins.

Batch apply models’ decisions. E1 chose to ‘batch apply’
the outputs of Model 3 to the current text excerpts due to
their high similarities with the previous ones. However, he
still manually verified the model’s decisions for each excerpt
to ensure consistency with his prior knowledge. Notably,
only one text excerpt failed to match due to some semantic
errors that were difficult for models to capture but obvious
to human experts. After careful analysis, E1 corrected the
model’s decision for this case. Through the whole process,
E1 gradually built trust in Model 3.

Move on to other clusters. E1 proceeded to examine
the text excerpts in the second cluster located in the lower
left corner. This time, Model 2 became the top-ranked one
as it performed well on the current text excerpts that were
possibly from another origin. Therefore, E1 followed similar
procedures as before by extensively analyzing only the initial
text excerpts and then ‘batch applying’ the model’s decisions
to those in the same cluster. This enabled him to efficiently
complete the detection process for all clusters in feature
distribution.

Summary. This case study shows how our approach
assists human experts in efficiently detecting multi-sourced
text by iteratively handling text excerpts from similar origins
and utilizing ML models to provide evidence to support their
judgments through feature analysis.

Case Study 2: Strategy-based Detection
E2 was provided with 40 manuscripts to review. Unlike
E1, E2 was not as experienced and hoped to benefit more
from human-machine collaboration and learn from models’
decisions through comprehensive feature analysis.

Locate similar model strategies. E2 examined the
Feature Exploration panel and identified two clusters in
feature contribution (Fig. 5A), indicating similar model
strategies. As such, E2 decided to adopt a strategy-based
procedure. He adjusted Global Match Weight to 0.9 to avoid
local optimum and set Feature Distribution Weight to 0.1 to
ensure the system recommended text excerpts from the same
clusters in feature contribution.

Find the globally best model. After several iterations, E2
discovered that only Model 4 had a moderate global match
rate of 80%. The separate locations of the text excerpts in
feature distribution (Fig. 5A1) suggested that they came from
diverse origins, resulting in poor performances of the other
three models trained on single datasets. In contrast, Model 4
was trained on a combined dataset and showed an acceptable
accuracy in detecting multi-sourced text (Tab. 3). Hence, E2
decided to conduct an analysis focused on Model 4 to gain
some insights.

Analyze the first cluster. It turned out that most text
excerpts in the cluster located in the lower left corner of
feature contribution were machine-generated. To investigate
the most influential factors, E2 inspected the Text Analysis
panel for each text excerpt. He found that the Syntax
dimension consistently contributed the most, with the Text
Structure subcategory having the greatest impact within this
dimension. Furthermore, the contribution value of Word
Count was much higher than others. E2 then performed
a more fine-grained analysis by brushing a smaller area
in Cohort Selection, and found that the Word Count
value was significantly lower than most human-written text
(Fig. 5C3). Additionally, Part-of-Speech Tag Frequency in
the Grammatical Issues subcategory was another important
feature. Further investigations revealed that the frequencies
of certain word classes were noticeably lower than those
in human-written text (Fig. 5C2). By highlighting the
corresponding words in the raw text (Fig. 5C1), E2 gained
a deeper understanding about this feature. Notably, these
observations persisted across most text excerpts of the first
cluster, indicating that they were classified as machine-
generated primarily due to syntax issues.
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Figure 4. Case Study 1 illustrates how the user (A) locates clusters in feature distribution, (B) reviews models’ decisions, and (C)
builds trust in the appropriate model through feature analysis.

Figure 5. Case Study 2 illustrates how the user (A) locates clusters in feature contribution, (B) analyzes the human-written text
cluster, and (C) analyzes the machine-generated text cluster.

Analyze the second cluster. On the other hand, most
text excerpts in the cluster located in the upper right
corner of feature contribution were human-written. Further
investigations revealed that the Pragmatics dimension
always had the highest positive contribution, whereas
the other two dimensions had negative or negligible
contributions. Therefore, E2 analyzed the most influential
feature SciBert Embedding, which belonged to the Writing
Style subcategory. By comparing the current focused text
excerpt (red dot) with the relevant cohort, E2 discovered that
it belonged to a cluster predominantly comprising human-
written text (orange dots), while other clusters were mainly
composed of machine-generated text (blue dots), as shown
in Fig. 5B. This observation was also validated in other text
excerpts of the second cluster, suggesting that they were
classified as human-written mostly based on their writing
styles.

Gain knowledge from models. Through the analysis of
different model strategies, E2 outlined two characteristics
that may help him in future identification of scientific
text. First, machine-generated text are typically shorter and
less detailed compared to human-written ones. Second, the
writing styles of human-written text differed significantly
from machine-generated ones in terms of specificity and
formality. These principles align with our formative study
and are further supported through feature analysis.

Summary. This case study demonstrates how our
approach assists human experts in interpreting models’
decisions by iteratively handling text excerpts treated by
similar model strategies and leveraging models’ insights to
identify distinctive characteristics that differentiate machine-
generated text from human-written text.

User Study
Experiment Design Participants. We recruited 15 partici-
pants, consisting of 9 researchers and 6 practitioners, each
possessing sufficient domain expertise and a minimum of 5
years of research experience in visualization.

Settings. To evaluate the effectiveness and efficiency of
our approach, a comparative study was conducted using three
conditions for scientific text detection:

C1. Human only. An ablated version of the system was
utilized that only displayed raw text. Participants annotated
each text excerpt based on their prior knowledge.

C2. Machine only. An ablated version of the system was
utilized that only displayed the outputs of four models.
Participants randomly applied one of the outputs to each text
excerpt.

C3. Human-machine collaboration. The complete version
of the system was utilized. Participants examined each
text excerpt combined with models’ decisions and feature
analysis, and then confirmed their final decisions.

Procedure. Participants were introduced to the study’s
purpose and asked to complete a consent form. They were
then instructed on the experiment design and encouraged to
familiarize themselves with the three versions of the system
with designed examples96. During the experiment, the order
of conditions were counterbalanced across participants. For
each condition, we sampled 60 text excerpts (15 ChatGPT-
generated, 15 GPT-3-generated, 15 GPT-2-generated, and
15 human-written), yielding 180 trials in total. In addition
to annotations, participants were required to rate their
confidence score on a 7-point Likert scale from 1 (low
confidence) to 7 (high confidence) for every 10 trials93.
Finally, we evaluated the results for each condition in
terms of effectiveness, efficiency, and reliability, measured
by overall accuracy, total completion time, and average
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confidence score (Fig. 6). Post-study interviews were also
conducted to collect qualitative feedback.

Results Analysis Effectiveness. C3 achieved a higher
accuracy than C1 by 9% on average, both of which
outperformed C2 significantly. This confirms that human
experts can detect most machine-generated scientific text,
while blindly applying models’ outputs proves inadequate
in identifying multi-sourced text. Most participants (11/15)
increased their accuracy in C3 compared to C1, since the
system enabled them to locate the most appropriate model
under various conditions by matching their decisions with
models’ outputs. Participants could then refine their weak
annotations based on models’ decisions, as certain excerpts
were ‘initially hard to distinguish’ (P2, P9) or ‘required
further verification from suitable models’ (P4).

Efficiency. Regarding completion time, C2 was the
fastest by directly utilizing models’ decisions but sacrificed
accuracy, as most participants resorted ‘majority voting’
(P3, P4) or ‘random selection’ (P9, P12). Although C3
was only 10% faster than C1 on average, most time was
spent on feature analysis or due to ‘system lagging’ (P8).
Also, our experiment involved a relatively small number of
text excerpts, which reduced the gap between completion
times. Additionally, participants praised the ‘batch apply’
function, which saved much time since they ‘do not need to
manually check each excerpt anymore’ (P3). Therefore, the
efficiency could be further improved once the system issues
are resolved, especially for large amounts of text excerpts.

Reliability. The average confidence score in C3 was 13%
and 93% higher than C1 and C2, respectively, demonstrating
the effectiveness of our approach in improving detection
reliability. Compared to C2, C3 significantly increased user
trust by allowing them to ‘see what factors contributed
to models’ decisions’ (P7). However, some participants’
confidence scores did not increase much between C3
and C1 due to explanations being ‘beyond expectations’
(P10), potentially caused by some correlated features that
made SHAP values less effective97. Interestingly, some
participants tended to seek explanations that supported their
initial judgments to ‘feel more confident’ (P1), even if the
corresponding contribution values were low. This could
lead to bias by ignoring other important features. Future
research on human-centered XAI98 is needed to explore this
phenomenon further.

Summary. Overall, the results showed that our approach
facilitated the effectiveness, efficiency, and reliability of
the detection process. Despite minor issues such as system
lagging, participants gave positive feedback on the usability
of our visual analytics system, especially the feature
projections which helped them discover patterns in feature
distribution and contribution values.

Discussion
In this section, we summarize the derived design implica-
tions, and then discuss the limitations and future work.

Implications
Incorporate human experts’ prior knowledge. Combining
the capabilities of human experts and machine intelligence in

Figure 6. Overall accuracy, total completion time, and average
confidence score for each condition.

detecting scientific text is effective, as our work has shown.
Human-machine collaboration in the detection process has
been previously advocated for1,21,24, and some tools22 have
been proposed to incorporate a human analyst to facilitate
detection. In our work, we match ML models’ decisions
with human experts’ prior knowledge to handle situations
where models’ outputs conflict with each other or human
judgment. We place much emphasis on the human side, as
we believe that it is the responsibility of human experts to
confirm the final judgments in high-stakes decision-making
scenarios. Thus, in determining whether a manuscript is
fake and violates academic integrity, experts should aim
for a balance between trusting their own judgments and
seeking evidence from models, rather than blindly accepting
models’ decisions, especially when models’ capabilities may
be weaker than humans themselves due to various limitations
such as OOD issues.

Leverage multiple models to facilitate detection.
Given the diversity and rapid development of LLMs,
a single detector may not suffice for all situations. To
address the issue, our mixed-initiative workflow is model-
agnostic and integrates various detectors to maximize their
strengths under different conditions. We assume that human
judgments are the ‘gold standard’ in scenarios that require
domain expertise or context information to verify the
detection results, such as academic and educational contexts.
Therefore, we provide a new perspective in this work by
leveraging multiple detectors along with human agency to
facilitate the detection process.

Support feature analysis with multiple granularities
and levels. Although preliminary works8,10 have explored
the feature contributions of ML models for detection, such
explanations are insufficient for effective interpretation.
Our experts appreciated the coarse-to-fine-grained manner
to display contribution values that can serve various
analysis goals. In addition to contribution-level analysis,
we also provide distribution- and excerpt-level analysis to
understand features from the cohort and instance perspective,
respectively. These analyses enhance human experts’ trust in
models’ decisions and enable them to learn from models’
behavior to improve their own detection ability.

Limitations & Future Work
Scalability. The current system is limited to a maximum
iteration size of 30 and 4 ML models in the workflow,
which may hinder its application in real-world scenarios.
Experts noted that the tabular view may not facilitate
effective comparisons when there were too many rows or
columns, while excessive dots in feature projections may
cause visual clutter99. Therefore, it is promising to design
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more effective visualizations to support the workflow at
a larger scale. Additionally, our system currently employs
SHAP values to evaluate feature contribution, which can
be computationally expensive, especially given the vast
volume of manuscript submissions encountered by leading
conferences and journals. While the computation of feature
distribution and contribution can be an offline task that
does not impede the workflow, the issue may present a
potential limitation when applied to large-scale text datasets.
Therefore, the integration of more efficient XAI techniques,
such as LIME51, is a viable direction for future work.

Generalizability. The proposed workflow can be
extended to various text detection contexts that require
human involvement and interpretability, such as identifying
cheating in educational contexts. However, given the
various critical distinctions between machine-generated
and human-written text across different scenarios, directly
applying the current statistical features and system designs
may not be feasible. Additionally, although the workflow
can theoretically be generalized to any feature-based ML
models, transformer-based models are not compatible with
our feature-based explanations and require alternative XAI
and visualization techniques for interpretation. In future
work, we plan to extend the workflow to support newly
proposed detection methods such as watermarking100 and
probability curvature101.

Conclusion
In this work, we identify critical distinctions between
machine-generated and human-written scientific text through
a quantitative experiment. Our findings provide valuable
insights into the capabilities of LLMs in academic writing
and can inform the design of more effective detection
methods. We propose a mixed-initiative workflow and a
visual analytics system that incorporates human experts’
prior knowledge to facilitate the efficiency, interpretability,
and reliability of the detection process. We demonstrate
the effectiveness of our approach through two case studies
and a controlled user study. We believe that our work will
inspire future research on integrating human intelligence into
artificial text detection.
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