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Abstract—Business intelligence (BI) transforms large volumes
of data within modern organizations into actionable insights
for informed decision-making. Recently, large language model
(LLM)-based agents have streamlined the BI workflow by au-
tomatically performing task planning, reasoning, and actions in
executable environments based on natural language (NL) queries.
However, existing approaches primarily focus on individual BI
tasks such as NL2SQL and NL2VIS. The fragmentation of tasks
across different data roles and tools lead to inefficiencies and
potential errors due to the iterative and collaborative nature of
BI. In this paper, we introduce DataLab, a unified BI platform
that integrates a one-stop LLM-based agent framework with an
augmented computational notebook interface. DataLab supports
a wide range of BI tasks for different data roles by seamlessly
combining LLM assistance with user customization within a
single environment. To achieve this unification, we design a
domain knowledge incorporation module tailored for enterprise-
specific BI tasks, an inter-agent communication mechanism to
facilitate information sharing across the BI workflow, and a cell-
based context management strategy to enhance context utilization
efficiency in BI notebooks. Extensive experiments demonstrate
that DataLab achieves state-of-the-art performance on various BI
tasks across popular research benchmarks. Moreover, DataLab
maintains high effectiveness and efficiency on real-world datasets
from Tencent, achieving up to a 58.58% increase in accuracy and
a 61.65% reduction in token cost on enterprise-specific BI tasks.

Index Terms—Business Intelligence, LLM, Data Analysis

I. INTRODUCTION

Business intelligence (BI) aims to transform large vol-
umes of data into actionable insights for informed decision-
making [1]. A typical BI workflow includes multiple stages
such as data preparation, analysis, and visualization. It requires
the collaboration of data engineers, scientists, and analysts
using various specialized tools (e.g., Visual Studio Code,
Power BI, Tableau), which can be highly tedious and time-
consuming [2]. Therefore, modern organizations require ad-
vanced techniques to automate and optimize this workflow.

Recent advancements in autonomous agents powered by
large language models (LLMs) [3] offer the potential to
streamline the BI workflow (Figure 1). By receiving instruc-
tions in natural language (NL), LLM-based agents can perform
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Fig. 1. General workflow of LLM-based agents for BI tasks.

task planning, reasoning, and actions in executable environ-
ments. This can significantly reduce the complexity of many
BI tasks, such as code generation [4], text-to-visualization
translation [5], and automated insight discovery [6].

However, previous works on LLM-based agents for BI pri-
marily focus on individual tasks or stages without considering
the BI workflow as a whole. The separation of BI tasks across
different data roles and tools impedes seamless information
flow and insight exchange, adding to communication costs,
delays, and errors [7], [8]. For example, data analysts using
GUI-based platforms (e.g., Power BI) often rely on data
engineers working with development tools (e.g., PyCharm)
to prepare data for analysis or visualization. This reliance
necessitates back-and-forth communication between analysts
and engineers due to the iterative and collaborative nature of
BI [1]. Such procedures highlight the limitations of existing
fragmented and fixed agent pipelines [9]. Consequently, this
leads to a significant gap among different roles, tasks, and
tools, which hinders timely and informed decision-making.

To bridge this gap, we aim to unify the BI workflow with a
one-stop LLM-based agent framework in a single environment
that satisfies the requirements of various data roles. However,
achieving this unification in practical enterprise settings is non-
trivial due to the following challenges:

C1: Lack of domain knowledge incorporation. Existing
studies usually leverage clean and synthesized research bench-
marks to build and evaluate agents [10]. However, BI tasks
typically involve large and dirty real-world datasets with many
ambiguities [11]. For example, column names in business data
tables may have unclear semantic meanings [12], and user
queries often include enterprise-specific jargon [10]. To miti-



gate these issues, incorporating extensive domain knowledge
is essential to enhance agents’ understanding of input data
and improve their performance on practical BI tasks. While
some approaches adopt fine-tuning [13] or continued pre-
training [14] to augment agents’ domain-specific capabilities,
acquiring the necessary large and up-to-date training data
corpora remains challenging in BI scenarios due to their
complexity and dynamic nature.

C2: Insufficient information sharing across tasks. Differ-
ent tasks are typically managed by corresponding LLM-based
agents to achieve optimal performance [15]. As a complex
BI query may encompass multiple tasks, information sharing
among the involved agents is critical. For example, the data re-
trieved by a SQL writing agent must be accurately conveyed to
a chart generation agent. Therefore, an effective and efficient
inter-agent communication mechanism is essential to align
their understanding of the overall analysis goals, current data
context, and executed actions. However, many existing multi-
agent frameworks, such as ChatDev [16] and CAMEL [17],
use unstructured natural language for communication. This
can lead to distortions [18] and is inadequate for handling
the complexity of BI tasks, which commonly involve diverse
information types (e.g., data, charts, texts).

C3: Demand for adaptive LLM context management.
LLM-based agents depend on their context windows (i.e., lim-
ited input tokens for NL understanding, reasoning, and gener-
ation) to complete tasks. Necessary contexts must be provided
to ensure a successful and seamless workflow. Meanwhile, in
a unified BI platform, vast amounts of multi-modal contexts
(e.g., code snippets and their execution results, charts and their
specifications) are intertwined and often relate to diverse data
tables. Obviously, only relevant portions of these contexts are
pertinent to specific tasks and should be selectively provided
to the agents [19]. Therefore, adaptive context management
tailored to prior states and current user needs is crucial for
maintaining system efficiency and cost-effectiveness.

In this paper, we introduce DataLab, a unified environment
that supports various data tasks throughout the BI workflow,
thereby serving different data roles whether they use Mark-
down, SQL, Python, or no-code, all within a single computa-
tional notebook. We use notebooks as the foundational system
due to their popularity in data science [7] and their iterative
nature for the BI workflow [1]. DataLab adopts an LLM-based
agent framework to integrate LLM assistance seamlessly, and
a notebook interface to enable user customization flexibly.

To improve agents’ performance on enterprise-specific BI
tasks (for C1), we develop a Domain Knowledge Incorpora-
tion module, a systematic approach for automated knowledge
generation, organization, and utilization. It leverages data
processing scripts (e.g., Python code, SQL queries) within
the entire enterprise to extract the knowledge associated with
databases/tables/columns, thereby uncovering their common
usage patterns. To facilitate information sharing across differ-
ent tasks (for C2), we design an Inter-Agent Communication
module, a structured mechanism that goes beyond pure NL to
enhance the information representation capabilities of agents.

It also formulates the information sharing process among
agents with a finite state machine (FSM) for a more controlled
and efficient flow of communication. Finally, to manage LLM
contexts within multi-modal notebooks (for C3), we propose a
Cell-based Context Management module that represents inter-
cell dependencies using directed acyclic graphs (DAGs). These
dependency graphs are dynamically updated in response to
user modifications. This enables the adaptive selection of
pertinent contexts based on specific task requirements, thereby
enhancing agents’ context utilization efficiency.

In summary, the major contributions of our work are:
• We present DataLab, a platform that unifies the BI

workflow with the integration of a one-stop LLM-based
agent framework and a computational notebook interface,
to bridge the gap among different roles, tasks, and tools.

• We develop a systematic approach for domain knowl-
edge incorporation to enhance LLM-based agents’ perfor-
mance on enterprise-specific BI tasks in practical settings.

• We introduce a structured communication mechanism to
formulate the information sharing process among differ-
ent agents to facilitate their cross-task performance.

• We propose an adaptive context management strategy to
improve agents’ context utilization abilities within com-
putational notebooks for efficiency and cost-effectiveness.

• We extensively evaluate DataLab on both research bench-
marks and real-world business datasets from Tencent,
demonstrating its performance on various BI tasks.

II. BACKGROUND

In this section, we briefly introduce the core stages and roles
in a modern BI workflow. We then provide an overview of
LLM-based agents, focusing on their applications in BI tasks.

A. BI Workflow

The BI workflow encompasses several critical stages,
namely data collection, storage, preparation, analysis, and
visualization. Data Collection [20] refers to the initial step
of gathering raw data from various sources like databases
and spreadsheets. Once gathered, Data Storage [21] typically
uses data warehouses or data lakes to organize the collected
data for efficient retrieval. This may also involve combining
data into a unified format (i.e., data integration). Subsequently,
Data Preparation [22] ensures data consistency, correctness,
and quality. This usually includes cleaning, structuring, and
enriching raw data into a format suitable for further analysis.
Following preparation, Data Analysis [23] applies statistical
and analytical techniques to extract insights, aiming to uncover
patterns, trends, and correlations in the data. Finally, Data
Visualization [5] presents analyzed data in visual formats like
charts, graphs, and dashboards, which makes complex data
easier to understand and interpret for decision-makers.

The data roles involved in the BI workflow are specific to
different organizations. Among them, data engineers, scien-
tists, and analysts are usually indispensable. Data Engineers
are tasked with data collection, storage, and preparation, con-
structing and administering data pipelines to ensure that data
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Fig. 2. Overview of DataLab and its three critical modules.

is accurately cleansed and structured for subsequent analysis.
They typically use SQL and Python for data processing, and
use cloud computing platforms like AWS for data storage
and ingestion. Data Scientists engage in data preparation and
analysis, applying advanced statistical and machine learning
methodologies to extract insights and forecast trends from
intricate datasets. They are familiar with Python/R and popular
data science libraries like Pandas. Data Analysts concentrate
on data analysis and visualization, analyzing data to discern
patterns and conveying findings through detailed visual reports
and dashboards. They use SQL to query data, and rely on BI
platforms like Tableau to perform and share their analyses.

In modern enterprises, a complex BI workflow requires the
collaboration of multiple data roles across various stages. The
current fragmentation of tools for data preparation, analysis,
and visualization introduces frictions and delays in timely
decision-making. Therefore, an integrated and unified platform
can serve as a shared environment for distinct user groups,
facilitating the efficiency, transparency, and productivity of BI.

B. LLM-based Agents for BI

LLM-based agents are autonomous systems powered by
LLMs that can perceive environments, execute tasks, make
decisions, and interact with users in complex contexts [3].
These agents comprise profiling, memory, planning, and action
modules, which respectively define the agent’s role, facilitate
operations in dynamic environments through recall and future
action planning, and convert decisions into outputs [24]. In BI
scenarios, agents receive users’ NL queries and then perform
data preparation, analysis, and visualization. By interpreting
execution results, they can iteratively complete many BI
tasks such as data transformation [25] and insight genera-
tion [6]. Moreover, equipped with vision language models
(VLMs) [26], agents can even generate GUI operations for
enterprise applications (e.g., BigQuery, Airflow) [2], which
further augments their capabilities for more complex BI work-

flows. Below, we list some typical tasks that can be streamlined
by LLM-based agents at each BI stage:

• Data Collection: Table Generation [27], Table Augmen-
tation [28], Table Summarization [29].

• Data Storage: Data Warehousing [2], Data Integra-
tion [30], Data Orchestration [2].

• Data Preparation: NL2SQL [31], NL2DSCode [4].
• Data Analysis: NL2Insight [32], Table Q&A [33].
• Data Visualization: NL2VIS [5], Chart Q&A [34].
However, most existing LLM-based agents are limited to

individual tasks and do not meet the diverse user requirements
of a complex BI workflow. Moreover, they often neglect
the integration of enterprise-specific knowledge, resulting in
unsatisfactory performance on proprietary business datasets.
This lack of generalizability and customizability highlights the
need for a structured and adaptive agent framework for BI.

III. OVERVIEW

Architecture Overview. As illustrated in Figure 2, DataLab
consists of two primary components: (1) LLM-based Agent
Framework and (2) Computational Notebook Interface.
• LLM-based Agent Framework. In DataLab, multiple

agents are designed for different BI tasks based on user
requirements. To achieve this, we first identify several com-
mon BI procedures and abstract them into data tools that can
be called upon by agents during inference. Example tools
include a Python sandbox for code execution and a Vega-
Lite environment for visualization rendering. Accompanied
by other auxiliary components like memory modules, each
BI agent is represented as a DAG for high flexibility and
easy extensibility. Within the DAG, nodes depict reusable
components (e.g., LLM APIs, tools) and edges depict their
connections (e.g., file transfer across tools). Figure 3 illus-
trates an example agent workflow for NL2VIS. Additionally,
we add a proxy agent to the framework, which serves as
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a hub to directly interact with users and allocate tasks to
each specialized agent based on user queries. These agents
collaborate with each other to complete a wide array of
tasks for various data roles throughout the BI workflow.

• Computational Notebook Interface. DataLab’s notebook
interface (Figure 4) serves as a unified, interactive, and
collaborative environment for different data roles to com-
plete their specialized tasks. To achieve this, we augment
JupyterLab (a widely used notebook interface) to support
(1) multi-language cells and (2) on-the-fly LLM assistance.
First, DataLab wrangles SQL, Python/PySpark, Markdown,
and Chart cells altogether, allowing both technical and non-
technical users to easily adopt their familiar workflows on
the notebook. Going beyond traditional notebooks that only
support Python and Markdown, DataLab notebooks directly
connect to backend databases for SQL query execution,
and feature GUI-based dashboards [35] similar to Tableau
for visualization authoring. Second, we integrate our LLM-
based agent framework seamlessly into each notebook cell.
Users can get LLM assistance both at notebook- and cell-
level. Specifically, users toggle an input box and type their
analytic queries, which are then processed by the agents in
our framework. These agents can create new cells or modify
existing ones in the notebook. Users can subsequently ex-
amine the results and make further customizations flexibly.

DataLab Workflow. Upon receiving an NL query and the
associated dataset, DataLab initially analyzes the dataset and
interprets the query, incorporating domain knowledge 1 be-
fore feeding them into LLMs. Then, DataLab leverages various
agents to complete the task, which may involve information
sharing with each other through a structured communication
mechanism 2 . Subsequently, the corresponding result will be
presented in the notebook. Users can either accept, edit, or
reject the result and continues the BI workflow. Meanwhile, a
context management strategy 3 automatically generates and
maintains cell dependencies within the notebook to promote
further agent calls. Next, we provide an overview of the three
critical modules in DataLab.

• Domain Knowledge Incorporation. This module takes a
data table’s schema, its associated script history (e.g., SQL
queries, Python code), and its data lineage information as
input. Specifically, the schema provides a basic overview
of the table and its columns, including their names and
types. The associated data processing scripts, which are
created by professionals and executed every day within the

Fig. 4. The notebook interface of DataLab.

organization, reflect the semantic meanings and common
usage patterns of the table and its columns. And the data
lineage information [36], which reveals interrelationships
among distinct tables and columns across the organization,
can serve as an auxiliary resource for domain knowledge
extraction. Based on the input, the module leverages LLMs
to automatically generate the knowledge components (e.g.,
descriptions, usages) of databases, tables, columns, and
certain values. These knowledge components are then or-
ganized in a knowledge graph to facilitate further retrieval
and utilization, which translate ambiguous user queries into
structured domain-specific languages (DSLs) for improved
agent performance on enterprise-specific BI tasks.

• Inter-Agent Communication. This module formulates the
information flow process among different agents as an FSM
to enable more control over their communications, with
nodes representing agents and edges representing inter-agent
information transition directions. Upon task completion,
each agent’s outputs are formatted into structured infor-
mation units [18], comprising key characteristics such as
the associated table’s identifier and a concise description of
the agent’s executed actions. The module also maintains
a shared information buffer for all agents to proactively



exchange information based on the FSM to improve com-
munication efficiency.

• Cell-based Context Management. This module identifies
cell dependencies within a notebook based on variable
references and constructs a DAG, where nodes represent
cells and edges denote their dependencies. Notably, data
variables in Python or SQL cells are meticulously tracked,
such as DataFrames and SELECTs. Given a user query,
the module traverses the DAG to locate relevant cells, per-
forms pruning based on task types, and retrieves information
from the shared buffer. Then, the original cells and their
corresponding information units are fed to the proxy agent
as necessary contexts to facilitate task completion.

IV. DOMAIN KNOWLEDGE INCORPORATION

In this section, we introduce DataLab’s Domain Knowl-
edge Incorporation module, which encompasses three stages,
namely knowledge generation, organization, and utilization.

A. Knowledge Generation

Ambiguities are pervasive in real-world BI scenarios, man-
ifesting both in the underlying databases and users’ NL
queries. For example, consider the query, ‘show me the in-
come of TencentBI this year’, which involves three columns:
‘prod class4 name’, ‘shouldincome after’, and ‘ftime’. The
semantic relationships between these column names and the
user’s request are often vague, leading to LLMs’ suboptimal
performance on such tasks. To mitigate these issues, existing
approaches integrate table schema [5] into prompts and adopt
retrieval-augmented generation (RAG) [10] to improve LLMs’
domain-specific capabilities. We categorize three types of
domain knowledge commonly utilized for BI tasks:

• Metadata: Information about data structure and at-
tributes, such as table and column names, types, descrip-
tions, and common usage patterns.

• Business Logic: Rules and processes that dictate how
data is used and interpreted within the business.

• Jargon: Specialized terminologies and acronyms specific
to the industry or organization.

Traditionally, such knowledge has been manually con-
structed by domain experts, which is tedious and time-
consuming. Through an extensive examination conducted at
Tencent, it was observed that, while 85% of the tables lack
comprehensive metadata, they are predominantly linked to var-
ious SQL or Python scripts utilized for data processing. These
scripts reveal common usage patterns within practical busi-
ness contexts. Additionally, for those tables lacking adequate
processing scripts, data lineage information, which elucidates
their connections to other tables or columns throughout the
organization, provides an alternative resource for metadata
imputation. Therefore, inspired by LLMs’ exceptional code
understanding and reasoning abilities, we propose an LLM-
based knowledge generation approach (Algorithm 1) that
leverages script history to abstract and summarize knowledge
components through meticulously-designed prompting tech-
niques. This automated approach comprises a Map-Reduce

process with a self-calibration mechanism [37] to generate
high-quality knowledge for databases, tables, and columns.

Algorithm 1 LLM-based Knowledge Generation
Input: Schema S, Script History H,

Lineage Information L, Score Threshold T
Output: Database/Table/Column Knowledge D, T , C

1: // Filter out duplicated or similar scripts
2: H ← preprocess(H)
3: Map Phase:
4: map res← [ ]
5: for each historical script hi ∈ H do
6: while si < T do
7: // Generate knowledge individually
8: di, ti, ci ← LLM(hi,S,L)
9: // Self-calibration

10: si ← LLM(di, ti, ci)
11: end while
12: map res.append([di, ti, ci])
13: end for
14: Reduce Phase:
15: // Synthesize knowledge collectively
16: D, T , C ← LLM(map res,S,L)
17: return D, T , C

Knowledge Components. Considering the previously de-
fined knowledge categories, metadata and business logic can
be deduced from data processing scripts, as both SQL queries
and Python code support data manipulation operations like
filtering and aggregation. Business logic is essential for com-
puting derived columns which, though absent in the original
table, hold significant value in business contexts. In contrast,
jargon primarily exists in user queries or organization wikis
(i.e., documents), necessitating enterprise-specific glossaries
for management and application. The knowledge components
that our automated approach can generate are outlined below:

• Database Level: description, usage, tags.
• Table Level: description, usage, organization, key col-

umn names, key derived attribute names, tags.
• Column Level: description, usage, type, tags, derived

column information (name, description, usage, calcula-
tion logic, related columns, tags).

These knowledge components are structured using JSON
formats to improve LLMs’ generation performance.

Map Phase. Given a data table, we take its schema S, its
script historyH, and its lineage information L as input. During
the map phase, each distinct historical script hi is individually
processed using an LLM as the mapping model to produce
corresponding knowledge components. The LLM is prompted
to carefully analyze the script’s semantic content and logical
structure, aiming to extract critical information relevant to the
specific business context. To mitigate LLMs’ hallucination
issues, focus is restricted to the involved databases, tables,
and columns. This process results in the generation of a set
of knowledge components associated with the script hi.



Self-Calibration. Within each iteration of the map phase,
we integrate a self-calibration mechanism that leverages
LLMs’ self-reflection abilities [38] to evaluate the intermediate
results using a numerical score ranging from 1 to 5. Specifi-
cally, we instruct the LLM to consider multiple aspects of the
knowledge components (e.g., correctness, comprehensiveness,
clarity) and provide several manually crafted in-context ex-
amples to demonstrate the scoring criteria. Should the rating
score si fall below the predefined threshold T , the knowledge
generation process must be repeated. Therefore, this feedback
loop ensures the generation quality of each iteration.

Reduce Phase. During the reduce phase, we aim to synthe-
size the individual results derived from each historical script
to produce the final sets of knowledge components D, T , and
C for the involved database, table, and columns, respectively.
The LLM is instructed to meticulously scrutinize, aggregate,
and summarize the information from all separate results to
ensure a consistent and conflict-free collective result.

For each data table at Tencent, we execute the above Map-
Reduce process to generate a comprehensive and high-quality
set of knowledge components, which can significantly benefit
many downstream BI tasks.

B. Knowledge Organization

We employ a knowledge graph G = (V, E) to systematically
organize the knowledge generated by our automated approach
(i.e., metadata and business logic) and the manually crafted
enterprise-specific glossaries (i.e., jargon).

As depicted in Figure 5, the knowledge graph adopts a
tree-based structure for knowledge organization. The nodes
{V} are structured into five primary types: database, table,
column, value, and jargon, each comprising various compo-
nents (e.g., description, usage) and uniquely identified by a
name. To address the common challenge of terminological
inconsistencies in user queries (e.g., synonyms, acronyms), an
additional node type, alias, has been introduced. This node
type contains alternative terms associated with the official
name of other node types and can be dynamically updated in
real-world applications. The relationships between these nodes
are represented by edges {E}, which delineate both logical
relationships among the primary node types and associative
relationships between alias nodes and other primary nodes.

To facilitate efficient knowledge retrieval, we develop a task-
aware indexing mechanism for graph nodes, utilizing Elastic-
search [39] for full-text search and StarRocks [40] for embed-
ding search. This supports both lexical and semantic matching
of knowledge nodes in response to user queries. The indexing
structure is designed as triplets ({name, content, tag}), where
the content field is a concatenation of knowledge components
specified based on the various requirements of downstream
tasks. For instance, some tasks necessitate the calculation
logics while others only need descriptions for successful com-
pletion. By dynamically selecting the appropriate index, we
ensure that knowledge retrieval is both efficient and effective.
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C. Knowledge Utilization

As shown in Figure 2 1 , given a user query Q, we initially
rewrite it to enhance clarity and detail. We then retrieve its
relevant knowledge from the knowledge graph G. Following
this, the query is translated into a DSL specification, facilitat-
ing downstream tasks like NL2SQL and NL2VIS.

Query Rewrite. In addition to ambiguities, user queries can
also be incomplete or underspecified, especially in multi-round
interactions. For example, queries might omit prior context
with phrases like ‘what about’. To ensure effective knowledge
retrieval, the original query is enhanced and rewritten into a
clearer and more detailed form, incorporating relevant prior
information when available. Notably, temporal references (e.g.,
‘last year’) are also standardized based on the current time.

Algorithm 2 Knowledge Retrieval
Input: User Query Q, Knowledge Graph G
Output: Knowledge Nodes VQ

1: VQ ← ∅
2: Coarse-Grained Retrieval:
3: VQ ← lex search(Q,G) + sem search(Q,G)
4: Fine-Grained Ordering:
5: for each node vi ∈ VQ do
6: if vi.type == alias then
7: vi ← backtrack(vi) // Backtrack to a primary node
8: end if
9: // Compute a weighted matching score

10: scorei ← ω1 ·lex eval(Q, vi)+ω2 ·sem eval(Q, vi)+
ω3 · LLM eval(Q, vi)

11: end for
12: VQ.sort(scorei) // Rank by matching score
13: return VQ.topK

Knowledge Retrieval. To enhance LLMs’ domain specific
performance by integrating relevant knowledge into their
context alongside the query, the selection and ordering of
knowledge nodes from the knowledge graph are crucial. We
employ a coarse-to-fine approach (Algorithm 2) to ensure
comprehensive and precise knowledge retrieval.

• Coarse-Grained Retrieval: We perform lexical and se-
mantic searches to retrieve a coarse set of knowledge
nodes via token matching and embedding similarity be-
tween the query and each node’s indexing triplet. We set a
rather loose threshold to maximize recall. For alias nodes,
we trace back to identify the nearest primary nodes (i.e.,
database/table/column/value/jargon nodes).



• Fine-Grained Ordering: To prioritize the retrieved
nodes, we implement a scoring mechanism that calculates
a weighted matching score for each node, assessing its
relevance to the query. This involves a three-stage evalu-
ation: token-based (i.e., lexicon), embedding-based (i.e.,
semantics), and LLM-based (i.e., overall relevance) [41].
Each stage yields a normalized score, with specific calcu-
lation methods and weights tailored to different BI tasks.
The final set of knowledge nodes VQ is determined by
sorting the initial node set according to these scores and
selecting the top-K nodes, where K is set to a relatively
large value to ensure a comprehensive coverage.

DSL Translation. The final step involves translating the
query into a DSL specification, a common routine in BI
scenarios [10]. This JSON structure specifies the relevant
data and processing requirements, including fields such as
‘MeasureList’ (i.e., numerical columns), ‘DimensionList’ (i.e.,
categorical columns), and ‘ConditionList’ (i.e., filters). We
prompt an LLM for DSL translation, providing detailed in-
structions and in-context examples to improve its performance.
The generated DSL specification is validated using JSON
Schema [42] to ensure syntactic and semantic correctness.
This specification can then be directly converted to high-level
languages like SQL and Vega-Lite based on predefined rules,
or be used to enhance free-form code generation for complex
tasks like NL2Insight, thereby facilitating LLMs’ performance
in practical business settings.

We also introduce a fallback strategy to address scenarios
where relevant knowledge is scarce, especially for in-the-
wild tables. Specifically, we develop a Data Profiling module
that systematically extracts information from the table. This
module consists of two stages: (1) heuristics-based analysis,
which identifies and calculates each column’s name, data type
(e.g., float, string), basic statistics (e.g., min, max), and a
random sample list, and (2) LLM-based interpretation, which
feeds the extracted information to an LLM to generate a
semantic description of each column and the overall table.
Together, these stages produce a comprehensive summary of
the table, aiding in the DSL translation process.

V. INTER-AGENT COMMUNICATION

In this section, we introduce DataLab’s Inter-Agent Com-
munication module, which facilitates efficient communication
among multiple agents to complete complex BI tasks.

Workflow. As shown in Figure 6, upon receiving a user
query, the proxy agent initiates an analysis to formulate an
execution plan (defined by an FSM), which comprises multiple
subtasks allocated to various agents (Steps 1-2). It then dy-
namically manages the communication among involved agents
based on task progression by retrieving information from a
shared buffer and forwarding it to the agents to support subtask
execution (Steps 5-6). Upon completion of the subtasks, the
proxy agent stores the agents’ outputs in the buffer (Steps 3-
4). Finally, once all subtasks are completed, the proxy agent
generates a final answer and returns it to the user (Step 7).
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Fig. 6. Workflow of Inter-Agent Communication.

Information Format Structure. A critical consideration
in multi-agent collaboration is what ‘language’ agents use
to communicate. In BI scenarios, the information exchanged
among agents is diverse, encompassing types such as SQL
queries, Python code, and charts. This variety makes tradi-
tional multi-agent frameworks [16], [17] that rely on natural
language for information sharing inadequate. To address this,
we design a structured information format tailored to the
unique characteristics of BI scenarios.

An information unit comprises six fields: Data Source,
Role, Action, Description, Content, and Timestamp. Data
Source identifies the dataset manipulated by the agent (e.g.,
a table identifier). Role indicates the identity of the agent
(e.g., SQL Agent). Action specifies the agent’s behavior (e.g.,
generate_sql_query). Description provides a summary
of the agent’s executed actions for the task (e.g., writing a SQL
query to extract specific data from the table). Content details
the agent’s output (e.g., a generated SQL query). Timestamp
records the completion time of the task. To maintain consistent
communication, all agents produce messages in this format.

Information Sharing Protocol. Another important question
to consider is how to ensure efficient information sharing
among agents. One extreme approach is that each agent
receives information solely from its predecessor based on a
plan chain [43]. While this minimizes data volume, it may
cause the agent overlooking essential context (e.g., background
information pertinent to the task). Conversely, allowing any
agent unrestricted access to the information of all others is
inefficient, as irrelevant context can degrade LLMs’ reasoning
quality [44] and introduces additional computational over-
head [45] during inference. Therefore, each agent should only
receive the most relevant information for task completion.

To this end, we introduce two mechanisms to achieve this:

• Shared Information Buffer is a location for agents to
store and retrieve information. Upon task completion,
an agent deposits the produced information into this
buffer via the proxy agent. This mechanism decouples
information producers from consumers, thereby reduc-
ing synchronization overhead. Consequently, inter-agent
communication becomes asynchronous and non-blocking,



allowing producers to continue processing without await-
ing the retrieval of information by consumers, and vice
versa. On the other hand, to manage the substantial
information volumes often associated with multi-agent
collaboration, we employ a dynamically growing buffer-
ing mechanism. Specifically, when the buffer reaches
capacity, it automatically increases its size (i.e., doubling
the current capacity). Additionally, outdated information
is periodically cleared. For example, if an agent’s in-
formation is updated based on execution feedback, the
original information is removed. This ensures that the
buffer can maintain high performance while efficiently
adapting to changing workloads.

• Selective Retrieval determines the information an agent
receives from others. Inspired by the message-passing
mechanism in TCP/IP [46], we design an FSM-based
approach to implement this. Specifically, the proxy agent
analyzes the user query and generates an FSM based on
task requirements and each agent’s abilities to orchestrate
multi-agent information sharing, with nodes depicting
agents and edges depicting information transition di-
rections. Each agent operates within three states: Wait,
Execution, and Finish. When an agent (i.e., acting as a
‘client’) needs to execute a subtask, the proxy agent (i.e.,
acting as a ‘server’) selects its relevant information from
the shared buffer based on the FSM, and forwards it to the
client agent. Upon receipt, the agent transitions from the
Wait state to the Execution state, performs the necessary
action, and produces structured information, which is then
sent back to the proxy agent. The proxy agent, upon
receiving the response, stores it in the buffer, and the
client agent reverts to the Wait state. This loop continues
until all subtasks are completed, at which point all agents
transition to the Finish state and release their resources.

VI. CELL-BASED CONTEXT MANAGEMENT

In this section, we introduce DataLab’s Cell-based Context
Management module, which adaptively manages contexts in a
notebook to ensure system efficiency and cost-effectiveness.

Thanks to the Inter-Agent Communication module (Sec-
tion V), DataLab can handle complex BI tasks that require
the collaboration of multiple agents. Specifically, user queries
will trigger the presentation or modification of cells in the
notebook, each corresponding to specific information units
in the shared buffer. However, the previous module primar-
ily aims at facilitating individual task completion for single
data roles. In contrast, real-world BI scenarios often involve
multiple data roles working on different tasks and collaborating
within a unified notebook. This typically results in a multitude
of multi-language cells (e.g., SQL, Python, Chart) generated or
altered by either agents or users themselves. When addressing
a new user query, it is crucial to efficiently provide the
proxy agent with the necessary contexts from the notebook.
Simply supplying all cells and their associated information
units is impractical due to inefficiency and high token costs.
Therefore, we aim to identify the minimum set of relevant

cells to minimize token usage without compromising agent
performance. To achieve this, we model cell dependencies
within the notebook as a DAG based on variable references,
and propose an adaptive context retrieval mechanism.

Algorithm 3 DAG Construction
Input: Notebook Cells C
Output: Dependency DAG G

1: v hash, cell refs← ∅, ∅
2: // Identify new variables in each cell
3: for each cell c ∈ C do
4: if c.type == Python then
5: ast← construct ast(c)
6: new v ← find global variables(ast)
7: v hash[new v]← c
8: else if c.type == SQL then
9: data v ← find data variable(c)

10: v hash[data v]← c
11: end if
12: end for
13: // Find referenced cells for each cell
14: for each cell c ∈ C do
15: external v ← find external variables(c)
16: cell refs[c]← find ref cells(external v, v hash)
17: end for
18: return G ← construct dag(cell refs)

DAG Construction. As shown in Algorithm 3, given note-
book cells C, the DAG construction process includes two steps:

• Identify new variables. For Python cells, we construct
an abstract syntax tree (AST) from the raw code to find
global variables that are accessible across the entire note-
book (e.g., function/class definitions, package imports).
We exclude local variables as they are only visible within
their scope. For SQL cells, any SELECT’s output is stored
in a data variable (e.g., DataFrame) for future use, and
thus represents a new variable. Conversely, Markdown
and Chart cells do not produce variables that can be
referenced elsewhere, and are therefore omitted. We store
the variable-cell associations using a hash table.

• Find referenced cells. Based on the hash table, we locate
each cell’s referenced cells by identifying its external
variables that are defined in other cells. For Python and
SQL cells, this can be easily achieved with ASTs. For
Chart cells, the underlying data variable serves as the
reference point. As Markdown cells do not associate
with any variables, they are excluded from this step.
Consequently, a DAG of the notebook can be constructed
using the extracted cell references.

The DAG keeps updating whenever a cell is created, modified,
or deleted, provided that the changes pass the syntax check.
This ensures real-time maintenance of cell dependencies.

Context Retrieval. Based on the cell dependency DAG
and an input query, relevant cells are identified through graph
traversal. This process supports queries at both cell-level



and notebook-level. For cell-level queries, the search is ini-
tiated within an existing cell, allowing for the straightforward
identification of all ancestral cells via the DAG. Notebook-
level queries, conversely, are formulated without specifying an
existing cell, which typically rely on LLMs to automatically
create new cells. In such cases, we first determine the related
data variable either from explicit user input or through LLM
prediction. Then, we locate the initial cell cs where the data
variable is defined. To ensure through coverage, all descendant
cells of cs are considered. Additionally, since Markdown cells
lack references, our selection is guided by the textual similarity
between cell content and the query. This process yields a
comprehensive set of relevant cells Cr for each query.

Subsequently, Cr is pruned based on task types. Specifically,
we employ LLMs to determine the task type contained in the
query and identify the involved cell types. For example, in
NL2DSCode tasks, only Python cells are considered. Accord-
ingly, we filter out irrelevant cell types, resulting in a pruned
set that constitutes the minimum set of relevant cells.

We then retrieve the associated information from the shared
buffer for each relevant cell generated or altered by agents. The
final necessary contexts for the query are determined by com-
bining the retrieved information units with the original relevant
cells, thereby providing a concise yet sufficient background for
the proxy agent to understand and address the query.

VII. EXPERIMENT

In this section, we evaluate DataLab’s performance using
both public research benchmarks and proprietary business
datasets from Tencent, including End-to-End Performance
Comparison, Sensitivity Analysis, Domain Knowledge Incor-
poration Evaluation, Inter-Agent Communication Evaluation,
and Cell-based Context Management Evaluation.

A. End-to-End Performance

To demonstrate the capabilities of DataLab as a unified BI
platform, we first compare its end-to-end performance with
SOTA LLM-based baselines on four typical BI tasks. We
utilize GPT-4 [59] as the foundation model for all methods.

1) Settings: The NL2SQL task converts natural language
to SQL queries, typically marking the start of a BI workflow.
We use two benchmarks (i.e., Spider [47] and BIRD [50])
and compare with two baselines (i.e., DAIL-SQL [48] and
DIN-SQL [49]). We use the Execution Accuracy (EX) as the
evaluation metric, which measures the execution equivalence
of the generated SQL queries with the ground truth.

The NL2DSCode task converts natural language to data
science code using Python libraries like NumPy and Pandas,
which happens frequently throughout the BI workflow. We
use two benchmarks (i.e., DS-1000 [4] and DSEval 1 [53])
and compare with two baselines (i.e., CoML [51] and Code
Interpreter [52]). Pass Rate is used as the evaluation metric,
which divides the number of passed problems by all problems.

The NL2VIS task converts natural language to data visu-
alizations based on either Python libraries like Matplotlib

1We only evaluate DSEval-LeetCode and -SO due to implementation issues.

or visualization grammars like Vega-Lite. We use two
benchmarks (i.e., nvBench [55] and VisEval [58]) and compare
with two baselines (i.e., LIDA [56] and Chat2Vis [57]) 2. For
nvBench, we use the EX metric for evaluation, which measures
the equivalence of the generated visualizations with the ground
truth based on the presented data values and chart types [60].
For VisEval, we use the Pass Rate metric to measure the
ratio of valid or legal results divided by all queries, and the
Readability Score judged by GPT-4V(ision) [61] to measure
the overall quality of the generated visualizations [58].

The NL2Insight task converts analysis goals to data insights
in an end-to-end manner, which requires LLMs’ comprehen-
sive problem-solving abilities. We use two benchmarks (i.e.,
InfiAgent-DABench [54] and InsightBench [32]) and compare
with two baselines (i.e., AutoGen [15] and AgentPoirot [32]).
For InfiAgent-DABench, we calculate the Accuracy of prob-
lems with correct answers to all problems. For InsightBench,
we use the summary-level LLaMA-3-Eval and ROUGE-1
scores as the evaluation metrics, which measure the alignment
of the generated insights against the ground truth based on
LLaMA-3 judgment and unigram overlap, respectively [32].

2) Results: As shown in Table I, DataLab achieves com-
parable performance or even surpass the SOTA LLM-based
baselines (most of which only focus on a single task) on all
four BI tasks. Specifically, DataLab outperforms all baselines
on benchmarks including BIRD, DS-1000, DSEval, Insight-
Bench, and VisEval, spreading over each critical BI stage.
This demonstrates the superiority of DataLab in unifying the
BI workflow with a single LLM-based agent framework.

For tasks that require the generation of symbolic languages
(e.g., NL2SQL, NL2DSCode, NL2VIS), DataLab consistently
performs well primarily due to the intermediate DSL specifica-
tions generated by our Domain Knowledge Incorporation mod-
ule. Although most research benchmarks lack the necessary
information for extracting table/column knowledge, DataLab
adopts a meticulously-designed data profiling strategy as an
alternative (Section IV-C) to fully utilize the provided data
schema, enabling LLMs to correctly identify and associate
the semantic relationships between data columns and NL
queries, which are crucial to generate high-quality DSLs.
Consequently, compared to merely feeding the original pure
NL queries, these intermediate DSLs can significantly improve
LLM-based agents’ performance on generating higher-level
languages like SQL queries, Python code, or Vega-Lite spec-
ifications, as also shown in previous works [62].

For more complex tasks (e.g., NL2Insight) that typically
require multi-step reasoning and/or the collaboration of mul-
tiple agents, DataLab also achieves a satisfactory perfor-
mance. Notably, it outperforms AutoGen, a popular multi-
agent framework, by up to 5.06% on DABench and 19.35%
on InsightBench. This performance gain can be attributed to
two key factors: the agents’ improved understanding of the
involved datasets due to data profiling and the incorporation

2As the two baselines lack support for NL queries related to multiple data
tables, we only evaluate on single-table queries for fair comparison.



TABLE I
PERFORMANCE OF DATALAB ON RESEARCH BENCHMARKS

BI Stage Task Benchmark Metric Method & Performance

Data Preparation

NL2SQL
Spider [47] Execution Accuracy

DataLab (Ours) DAIL-SQL [48] DIN-SQL [49]
80.70 -2.54% 83.60 82.80

BIRD [50] Execution Accuracy
DataLab (Ours) DAIL-SQL DIN-SQL
61.33 +9.71% 57.41 55.90

NL2DSCode
DS-1000 [4] Pass Rate

DataLab (Ours) CoML [51] Code Interpreter [52]
53.80 +21.72% 44.20 51.60

DSEval [53] Pass Rate
DataLab (Ours) CoML Code Interpreter
80.99 +12.64% 71.90 80.58

Data Analysis NL2Insight

DABench [54] Accuracy
DataLab (Ours) AutoGen [15] AgentPoirot [32]
75.10 +5.06% 71.48 75.88

InsightBench [32]
LLaMA-3-Eval

DataLab (Ours) AutoGen AgentPoirot
0.37 +19.35% 0.31 0.35

ROUGE-1
DataLab (Ours) AutoGen AgentPoirot
0.33 +17.86% 0.28 0.35

Data Visualization NL2VIS

nvBench [55] Execution Accuracy
DataLab (Ours) LIDA [56] Chat2Vis [57]
53.90 +0.13% 54.71 53.83

VisEval [58]
Pass Rate

DataLab (Ours) LIDA Chat2Vis
75.99 +5.67% 74.66 71.91

Readability Score
DataLab (Ours) LIDA Chat2Vis

3.73 +0.81% 3.77 3.70

NOTE: Percentage gain is calculated relative to the weaker SOTA baseline marked with underlines.
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Fig. 7. Performance of DataLab using various underlying LLMs.

of our structured communication mechanism. This mechanism
standardizes inter-agent information sharing, enabling a more
comprehensive and thorough insight discovery process, espe-
cially when provided with high-level analytical objectives.

B. Sensitivity Analysis

To evaluate DataLab’s robustness, we experiment with both
closed- and open-source LLMs (i.e., GPT-4, Qwen-2.5 [63],
and LLaMA-3.1 [64]) on the above tasks using benchmarks
including Spider, DS-1000, DABench, and VisEval.

As shown in Figure 7, DataLab consistently achieves satis-
factory performance on all tasks, albeit with some sensitivity
to the underlying LLMs. Proprietary models like GPT-4 typ-
ically exhibit superior instruction following and code gener-
ation abilities, surpassing open-source models like Qwen-2.5
and LLaMA-3.1. For code-intensive tasks like NL2DSCode
and NL2Insight, LLaMA-3.1 experiences notable performance
drops, especially on DS-1000, due to its relatively weaker
code generation capabilities. We further evaluate DS-1000
using vanilla LLaMA-3.1 and achieve a pass rate of 36.90%

(lower than 42.50% when integrated with DataLab). Another
interesting fact is that, all three LLMs perform similarly on
VisEval, with LLaMA-3.1 surprisingly being the best. These
findings indicate that DataLab maintains a consistent perfor-
mance across tasks, despite variations in LLMs, attributed to
our data profiling and communication mechanisms. The data
profiling mechanism enhances agents’ understanding of input
data, while the inter-agent communication module enables
efficient error handling and iterative refinement, leading to
overall performance improvements.

C. Effect of Domain Knowledge Incorporation

1) Knowledge Generation: As described in Section IV-A,
this module aims to automatically generate knowledge com-
ponents of data tables and columns. Deployed at Tencent for
one month, 2,426 databases, 262,041 tables, and 2,708,884
columns (averaging 10.3 columns per table) have been suc-
cessfully processed for knowledge generation, with an average
time cost of 45.2 seconds per table. These statistics exhibit the
practical application of our approach at a large enterprise.

To evaluate the quality of the generated knowledge, we
collect a real-world dataset comprising 50 tables and 629
columns. Each table and column is annotated by domain
experts for a ground truth of their semantic meanings. We then
compare the Sentence Embedding Similarity (SES) between
the generated descriptions and the ground truth using M3-
Embedding [65], with 1 being identical and 0 being irrelevant.
Results show that, the average SES scores are 0.712 (60%
above 0.7) for tables and 0.677 (53% above 0.7) for columns,
indicating the practical utility of the generated knowledge.



TABLE II
ABLATION STUDY ON DOMAIN KNOWLEDGE INCORPORATION

Task / Metric S1 S2 S3

Schema Linking / Recall @5 (%) 41.02 71.79 79.49
NL2DSL / Accuracy (%) 32.52 61.66 91.10

Overall, the real-world deployment and quality evaluation
demonstrate the efficiency and effectiveness of the knowledge
generation process of this module in practical settings.

2) Downstream Tasks: To assess the real-world impact of
this module, we evaluate the following downstream tasks:

• The Schema Linking task seeks to select relevant tables
and columns from the database schema based on NL
queries, providing a basis for further analysis [66]. It
requires LLMs to precisely capture the semantic relation-
ships between user input and elements of the schema.

• The NL2DSL task converts NL queries to DSLs, which
have been commonly adopted in commercial BI platforms
and are crucial for many downstream tasks [10], [67]. In
DataLab, DSLs are used as intermediates for generating
SQL queries, Python code, and visualizations.

Due to common issues like ambiguities and jargon in real-
world BI scenarios, both tasks require LLMs’ deep understand-
ing of domain knowledge. For Schema Linking, we collect a
real-world dataset comprising 439 query-table-column pairs,
and use Recall @5 for evaluation. For NL2DSL, we compile
another dataset comprising 326 query-DSL pairs, and measure
the overall Accuracy. We then employ this module to generate
knowledge for each involved table and column. For compari-
son, we design the following three experiment settings:

• S1 (w/o knowledge): This setting provides NL queries
along with a brief data schema generated by Pandas,
but no additional knowledge, serving as a baseline. It is
commonly adopted by most existing LLM-based agents.

• S2 (w/ partial knowledge): Compared to S1, this setting
additionally provides the generated description, usage,
and tags of data tables and columns. It accounts for
almost all successful cases in our practical deployment.

• S3 (w/ all knowledge): Compared to S2, this setting
further provides all generated knowledge of data tables
and columns (see Section IV-A). It accounts for approxi-
mately 40% successful cases in our practical deployment.

As shown in Table II, DataLab’s performance on both tasks
improves significantly when provided with enterprise-specific
knowledge. Specifically, the Recall @5 of Schema Linking
increases by 38.47%, and the Accuracy of NL2DSL improves
by up to 58.58%. Even with only partial knowledge (S2), the
performance still exhibits a significant increase of 30.77% for
Schema Linking and 29.14% for NL2DSL compared to the
baseline (S1). During our deployment at Tencent, we observe
that many real-world business tables lack sufficient informa-
tion required for generating comprehensive knowledge, often
limited to table and column descriptions, usage, and tags.
While understanding the semantic meanings of ambiguous

TABLE III
ABLATION STUDY ON INTER-AGENT COMMUNICATION

Metric S1 S2 S3

Success Rate (%) 73.00 85.00 92.00
Accuracy (%) 56.00 79.00 84.00

table/column names can largely enhance LLMs’ performance,
the absence of other knowledge - especially calculation logic
of derived columns for NL2DSL - can impede their capabilities
in certain scenarios. This explains the performance difference
between S2 and S3. Despite this, the promising results of
S2 guarantee a minimum acceptable level of performance,
demonstrating the module’s effectiveness and robustness for
downstream tasks in real-world BI scenarios.

D. Effect of Inter-Agent Communication

We experiment with a complex BI scenario that in-
volves multiple tasks performed by distinct agents: NL2SQL,
NL2DSCode, NL2VIS, Anomaly Detection, Causal Analysis,
and Time Series Forecasting. We compile a dataset from prac-
tical settings at Tencent, consisting of 2 databases, 10 tables,
and 111 columns. For each table, we meticulously design 10
complex questions derived from real-world business queries,
totaling to 100 samples. Each question requires multi-step
reasoning and multi-agent collaboration, ensuring a rigorous
evaluation of our inter-agent communication mechanism.

We evaluate this module’s efficiency and effectiveness by
respectively calculating the Success Rate and Accuracy of
the agents’ responses across all questions. The Success Rate
measures the ratio of questions that can be successfully solved
within a maximum of 5 calls per agent, while the Accuracy
measures the ratio of correct answers among all questions. For
comparison, we employ three experiment settings:

• S1 (w/o FSM) [18]: This setting removes the FSM-
based information sharing protocol. Therefore, each agent
receives all information from the shared buffer.

• S2 (w/o information formatting) [15]: This setting
removes the information format structure and adopts pure
natural language for inter-agent communication.

• S3 (w/ both): This setting keeps both techniques.

As illustrated in Table III, DataLab’s performance on com-
plex BI tasks improves by 19.00% in Success Rate and
28.00% in Accuracy with our inter-agent communication
mechanism. Without the FSM-based information sharing pro-
tocol (S1), performance significantly degrades. Error analysis
reveals that most failures involve more than 3 agents, result-
ing in overwhelming and irrelevant information that hinders
LLMs’ reasoning, thereby leading to incorrect outputs [19].
Additionally, the absence of the information format structure
(S2) leads to a 7% decrease in Success Rate and a 5% drop in
Accuracy, highlighting the importance of structured prompts
in enhancing LLM comprehension and reducing information
sharing ambiguities. This is critical in BI scenarios where
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complex tasks often require iterative error handling for data
processing and structured summaries for lengthy outputs.

E. Effect of Cell-based Context Management

1) DAG Construction: To evaluate the efficiency of the
DAG construction process, we collect 50 DataLab notebooks
containing multi-language cells from practical settings, with
cell counts ranging from 2 to 49. We measure the Time Cost
of DAG construction both at notebook-level and cell-level. The
initial construction encompasses all cells upon notebook open-
ing, whereas subsequent updates generally involve a single
cell. Our goal is to ensure a reasonable cold-start time while
maintaining real-time responsiveness for subsequent updates.

As shown in Figure 8, DAG construction and updating
maintain low time costs, at less than 250 and 10 milliseconds,
respectively. The total time for DAG construction increases
with cell count, reaching a maximum of 232.22 milliseconds
for 35 cells. In contrast, the per-cell time for DAG updating
averages to 3.78 milliseconds, peaking at 9.84 milliseconds for
5 cells. Time costs are affected not only by cell count but also
by lines of code, accounting for observed fluctuations. Given
that a typical DataLab notebook contains fewer than 50 cells,
these results demonstrate the efficiency of DAG construction.

2) Task Completion: For each notebook in our collected
dataset, we derive 3 real-world user queries, which involve
NL2SQL, NL2DSCode, and NL2VIS tasks, totaling to 150
samples. We evaluate this module’s performance and cost-
effectiveness using two metrics: Accuracy and Token Cost per
Query. For comparison, we conduct an ablation study with
two experiment settings: S1 (w/o DAG) and S2 (w/ DAG).

As illustrated in Table IV, DataLab achieves a satisfactory
Accuracy under both settings. Further analysis reveals that cer-
tain Markdown cells may contain critical information for task
completion, which are occasionally failed to retrieve by our
context retrieval mechanism due to limitations of embedding
similarity [68]. This accounts for the slight 4.67% drop in
Accuracy under S2. Conversely, S2 significantly reduces the
Token Cost per Query by 61.65% compared to S1. This is
achieved by identifying the minimum set of relevant cells based
on DAGs. These results demonstrate the cost-effectiveness of
this module while maintaining acceptable performance.

VIII. RELATED WORK

Business Intelligence Platforms. BI platforms support
users in analyzing business data for decision-making [8],

TABLE IV
ABLATION STUDY ON CELL-BASED CONTEXT MANAGEMENT

Metric S1 S2

Accuracy (%) 86.67 82.00
Token Cost per Query (K) 10.69 4.10

[12]. Representatives like Tableau [69], Power BI [70], and
Databricks [71] provide GUIs to support user interactions for
data transformation and dashboard generation. These platforms
also integrate natural language interfaces [72], [73] to lower
the burden of manual operation. Quamar et al. [1] proposed
an ontology-based method based on business models to pro-
vide semantic information and reasoning capability for query
interpretation. The emergence of LLMs has further enhanced
the domain knowledge integration and visualization generation
abilities of BI platforms [74], [75]. Compared with these
existing tools that mostly target data analysis scenarios, we
go beyond to support more comprehensive stages (e.g., data
collection and preparation) and roles (e.g., data engineers and
scientists) in BI scenarios, which significantly reduces the cost
of platform switch and requirement communication.

LLM-based Data Analysis. LLMs have demonstrated sig-
nificant capabilities in semantic understanding and logical
reasoning, facilitating complex data analysis tasks within con-
versational interfaces [6], [22]. Early empirical studies [76]
investigate how data analysts interact with LLMs and iden-
tify challenges like contextual data retrieval, prompt re-
finement, and code adaptation. Table-GPT [77] fine-tunes
LLMs on synthesized table-task data to enhance their table-
understanding abilities. Inspired by Chain-of-Thought prompt-
ing [43], Chat2Query [23] decomposes the NL2SQL task
into multiple steps to improve generation quality. Similarly,
InsightPilot [78] automates the discovery of data insights and
synthesizes them into high-level overviews. Chat2Data [79]
leverages domain knowledge based on vector databases to
mitigate LLMs’ hallucination issues. While most existing
works focus on individual tasks and generate results in an end-
to-end manner, we introduce a unified platform for various data
tasks in a computational notebook workspace. It supports user
intervention of intermediate results, enabling more flexible
human-LLM collaboration for data analysis in BI scenarios.

IX. CONCLUSION

In this paper, we present DataLab, a unified platform
for business intelligence that combines an LLM-based agent
framework with a computational notebook interface. DataLab
features a domain knowledge incorporation module, an inter-
agent communication mechanism, and a cell-based context
management strategy. These components enable seamless in-
tegration of LLM assistance with user customization, making
DataLab well-suited for practical BI scenarios. Extensive
experiments on both research benchmarks and real-world
business datasets demonstrate the effectiveness of DataLab.
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