
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Visual Diagnostics of Parallel Performance in
Training Large-Scale DNN Models

Yating Wei, Zhiyong Wang, Zhong-
wei Wang, Yong Dai, Gongchang Ou, Han Gao, Haitao Yang, Yue Wang,Caleb Chen Cao, Luox-

uan Weng, Jiaying Lu, and Rongchen Zhu,Wei Chen

Abstract—Diagnosing the cluster-based performance of large-scale deep neural network (DNN) models during training is essential for
improving training efficiency and reducing resource consumption. However, it remains challenging due to the incomprehensibility of the
parallelization strategy and the sheer volume of complex data generated in the training processes. Prior works visually analyze
performance profiles and timeline traces to identify anomalies from the perspective of individual devices in the cluster, which is not
amenable for studying the root cause of anomalies. In this paper, we present a visual analytics approach that empowers analysts to
visually explore the parallel training process of a DNN model and interactively diagnose the root cause of a performance issue. A set of
design requirements is gathered through discussions with domain experts. We propose an enhanced execution flow of model operators
for illustrating parallelization strategies within the computational graph layout. We design and implement an enhanced Marey’s graph
representation, which introduces the concept of time-span and a banded visual metaphor to convey training dynamics and help experts
identify inefficient training processes. We also propose a visual aggregation technique to improve visualization efficiency. We evaluate our
approach using case studies, a user study and expert interviews on two large-scale models run in a cluster, namely, the PanGu-α 13B
model (40 layers), and the Resnet model (50 layers).

Index Terms—Visual Analysis, Deep Neural Network, Model Training, Parallel Performance

✦

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have grown
dramatically. Researchers and engineers have applied DNN models
to solve their problems in various fields, including natural language
processing (NLP) [1], [2], [3], image classification [4], and speech
recognition [5]. Accordingly, sizes of DNN models have increased
dramatically, making DNNs greatly computation- and storage-
intensive. Thus, it is becoming popular to parallelize the training
of DNN models in a distributed cluster. The most extensively used
parallelization strategy is data parallelism (DP) [6]. It is used for
scenarios where the bulk of training data exceeds the capacity of
a single device. To solve this problem, DP places a duplicate of
the entire DNN model on each device, permits training data to be
divided into numerous shards and distributed across devices, and
synchronizes model parameters across replicas at the end of an
iteration to obtain a global model. Model parallelism (MP) [7] is
another prevalent parallelization strategy. It is utilized when a model
is too huge to fit in local memory. In this case, the model is split into
different modules. Each module can be placed in a different training
device. Depending on the split method, there are two types of MP,

• Y. Wei, Z. Wang, Z. Wang, Y. Dai, L. Weng, J. Lu, R. Zhu and W. Chen are
with The State Key Lab of CAD & CG, Zhejiang University, Hangzhou,
Zhejiang 310058, China.
E-mail: {weiyating, zerowangzy, wzw09, daiyong, lukeweng, 3180103570,
zrcrcz, chenvis} @zju.edu.cn

• G. Ou, H. Gao, H. Yang, Y. Wang and C. Cao are with Distributed Data
Lab, Huawei Technologies Co., Ltd., Shenzhen 518129, China.
E-mail: {ougongchang, gaohan19, yanghaitao1, wangyue53}
@huawei.com, {caochen.hkust} @gmail.com

• Wei Chen is the corresponding author.

namely intra-layer MP (also known as Tensor Slicing) [8], [9] and
inter-layer MP (also known as Pipeline Parallelism) [10], [11]. The
choice of strategy directly affects the training efficiency. For the
same model, the training time of different strategies may differ by
several times. For example, ImageNet/ResNet-50 with a relatively
large training dataset have been successfully trained in 74.7 seconds
with DP [12]. However, MP is not suitable for this case. In general,
every parallelization strategy has the potential to fail when the
underlying model is too large. Diagnosing performance issues in
a large-scale cluster is, however, not trivial. On the one hand, the
usable resources in a cluster are always limited. On the other hand,
the training behaviors can have a large negative impact on the
diagnosis process.

For these reasons, there is a rising interest in visually compre-
hending and diagnosing the parallel training process of a DNN
model, which has theoretical and practical benifits for deep learning
experts. There are three major challenges. The first challenge is the
understanding of the DNN models and parallelization strategies
in the clusters. It is difficult to intuitively represent parallelization
strategies and the execution logic within the computational graph
of the underlying model. Especially in large-scale clusters, where
each device holds a part of the entire computational graph,
understanding the execution context of operators is difficult. The
second challenge is to efficiently convey the massive quantity of
profiling data generated during the parallel training of a DNN
model. The profiling data from the distributed training process
includes training dynamics such as memory usage, computation
time, communication time, etc., which is represented with a set
of high-dimensional time series. To comprehensively understand
the data and possible performance issues, multi-faceted patterns
should be clearly conveyed, such as the temporal patterns of devices
in a cluster in terms of multiple metrics. The third challenge is

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

identifying the causes of the inefficiency of the training process.
An performance issue can be caused by several root causes. There
are various parallelization strategies, yielding different ways of
identifying performance issues. Given the scale of DNN models
and clusters, there is a need to clearly show the anomalous patterns
of performance issues with a level-of-detail visualization.

A few studies have focused on visual analysis of parallel
model training. Tensorboard displays the computational graph
of a DNN model using the hierarchical structure from the
perspective of a single device in the cluster [13]. Chrome trace
viewer (chrome://tracing) provides rich analysis and visualization
capabilities for performance profile and timeline tracing. It arranges
model operators in the order of the execution sequence from a
single-device execution perspective. All these works focuses on
cases in a single device, and can not be directly applied to the
analysis of a bottleneck’s root cause.

To address these challenges, we have formulated the design
requirements through cooperation with experts of MindSpore (co-
authors of this paper). On the basis of the features of DNN
computational graphs, we employ a directed acyclic graph (DAG)
to describe it, where nodes indicate operators, and edges indicate
the dataflow between nodes. To improve the comprehensibility
of the DAG, we have built a force-directed graph layout by
applying the execution sequence of operators to constrain the
repulsive force against each node. Information of parallelization
strategies is incorporated into the computational graph. We have
provided edge configurations to hide edges that are not important
for understanding the main logic, such as edges representing the
data flow in the data preparation phase. Furthermore, we have
automatically identified similar substructures in the computational
graph and stack them, such as optimizers used to reduce the
losses [14]. To effectively convey complicated performance metrics
and their relationships, we have built a visual interface with multiple
views. The visualization and interaction designs support the visual
analysis of performance issues at three levels, namely cluster-level,
device-level, and block-level, to present multi-faceted patterns. In
particular, we have enhanced Marey’s graph by incorporating the
concept of time-span and a banded visual metaphor to facilitate the
detection of inefficiencies in the training processes and relationships
between the various DNN model operators. The communication
view presents communication details from the cluster’s perspective
and thus facilitates the refinement of the root cause. Finally, Finally,
we evaluate our work utilizing two case studies and one user study
of real-world application scenarios and collect experts feedback.

In conclusion, the main contributions are as follows:
• We propose a visual analytics approach that assists experts in

comprehending the parallel training process and interactively
diagnosing the causes of training issues.

• We introduce the execution sequence into the computational
graph layout to enhance the study of parallelization strategies.

• We enhance Marey’s graph by incorporating the concept of
time-span and a banded visual metaphor to convey training
dynamics and help experts identify the causes of inefficiency.

The remaining sections of this paper are structured as follows.
Section 2 discusses the related work. Section 3 introduces the
parallelization strategies for DNNs and performance profiles. In
Section 4, requirement analysis and system overview are elaborated.
Section 5 describes the visualization design. Section 6 evaluates
our work from different perspectives. In section 7, we discuss our
work from multiple perspectives. Section 8 concludes the paper.

2 RELATED WORK

2.1 Visualization of DNN Computational Graph

Several studies [15], [16], [17] demonstrate the mechanism of
DNNs from a network-centric perspective. Directed acyclic graphs
(DAGs) are often employed to illustrate the computational graph.
Operators are indicated by nodes and connected by links [18].
CNNVis [19] utilizes a number of clustering techniques to
effectively represent a deep model and decrease the visual clutter
generated by a large number of nodes and links. TensorBoard [20]
provides a scalable graph view of a DNN’s computation graph.
TensorBoard [20] presents the computational graph of a DNN with
a scalable graph visualization. It aggregates nodes into high-level
blocks. High-degree nodes are not included to reduce visual clutter.
The above approaches facilitate experts in better understanding the
network structure and reducing visual clutter. However, sometimes
experts might not understand the execution logic of operators. For
example, collapsed nodes lead to the loss of the execution context
and make it inconvenient to recognize predecessors and successors
of operators. High-degree nodes in TensorBoard [20] may result in
interruptions in the data flow. In this paper, we introduce execution
sequence into the computaional graph layout.

2.2 Visualization of Cluster Performance

Descriptions of distributed cluster performance are complex.
Description data could be textual, hierarchical, and temporal, etc.
Researchers have proposed several schemes for cluster performance
data visualization. La VALSE [21] visualizes tens of millions of
RAS (reliability, availability, and serviceability) logs by using
a scalable design to facilitate users in efficiently identifying
the causes of failure events. The performance of a cluster is
substantially determined by inter-device communication. Fujiwara
et al. [22] offer a visual analysis system to assist users in
comprehending diverse visual patterns of communication and iden-
tifying communication bottlenecks to improve the communication
efficiency in parallel applications. To reveal the execution details of
the operating system (such as CPU, network, and I/O), researches
are conducted for jobs like anomaly identification. To evaluate
the work load balancing, Xian et al. [23] propose a load scoring
algorithm based on high-performance cluster data. The profile
module of Cloud TPU 1 provides performance visualization from
different scales.

2.3 Visualization of Temporal Data

A great deal of study has been conducted on temporal data
visualization in recent years. Bach et al. [24] survey a variety
of techniques and categorize them from a novel standpoint. They
explain techniques as a series of actions performed on an imaginary
space-time cube. Extraction, flattening, geometry transformation,
and content transformation comprise these actions. Among tempo-
ral data visualization techniques, the event sequence visualization
technique is the most relevant to our study. Marey’s graph [25]
is first created using space cutting to visualize train schedules
in the 19th century. Inspired by this design, Palolm et al. [26]
provide a visual analytic method for analyzing transportation
timetables. ViDX [27] applies and extendeds Marey’s graph to
track and troubleshoot manufacturing assembly line performance.
Lifelines [28] presents a visualization for patient medical records.

1. https://cloud.google.com/tpu/docs/cloud-tpu-tools

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Sankey diagram has been widely used for the analysis of human
mobility [29] and electronic health records [30], [31], [32]. In
this paper, we extend Marey’s graph to include the idea of time-
span and a band visual metaphor for efficient identification of
inefficiencies in the training processes.

3 BACKGROUND

In this section, the strategy abstraction and several performance
issues are introduced.

S = (2, 1, 1)

sa
m

pl
e

p
ar

am
et

er
1

parameter2

(a)

S = (1, 4, 1)

sa
m

pl
e

p
ar

am
et

er
1

parameter2

(b)

sa
m

pl
e

p
ar

am
et

er
1

parameter2

S = (1, 2, 2)

(c)

sa
m

pl
e

p
ar

am
et

er
1

parameter2

S = (2, 1, 2)

(d)

Fig. 1. The illustration of the data parallelism (a), the model parallelism
(b) and two types of the hybrid parallelism (c-d). Each cube represents
the output tensor of an operator with three parallelizable dimensions, i.e.
sample, parameter1 and parameter2.

Strategy abstraction. The training of a DNN involves iterations
of forward and backward computations. Each iteration of the
training loop processes a subset of the input data and updates
the model parameters. However, modern DNN models and the
size of the training dataset are growing extremely large, resulting
in longer training time and requiring more hardware resources.
Therefore, parallel distributed training has been introduced. The
fundamental parallelization strategies include data parallelism and
model parallelism. For some complex models, experts usually
use a hybrid of the fundamental parallelization strategies. Such
hybrid parallelization strategies divide the output tensor of operators
into different parallelization forms [33], which brings challenges
to the strategy understanding during performance diagnosis. For
simplicity, parallelism strategies can be defined in the same form.
Given an operator opi, parallelizable dimensions Pi represents
all divisible dimensions in its output tensor. Pi = {s, p1, p2, ..., pn},
where s indicates a sample dimension (i.e. the training data samples)
and pi indicates a parameter dimension. If the parameter dimension
is partitioned, the model parameters will be splitted. Thus, the
parallelism strategy S = (ns,np1 ,np2 , ...,npn), where n indicates the
number of divisions in the dimension. Figure 1 shows examples
of parallelism strategies, where operators are partitioned over one
dimension or multiple combined dimensions.

Forward work Backward work Idle

1 2 3 4

1 2 3

1

1 1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

6

62

2

3

3

4

4

4

5

5

5

5

6

6

6

6

7

7

8

8

7

7

Stage 1

Stage 2

Stage 3

Stage 4

Fig. 2. The execution timeline for a pipeline with four stages, each running
on one device. This illustration is proposed in PipeDream [34].

In particular, pipeline parallelism (PP) cannot be represented
using the form S. PP splits the layers of the model, obtaining
several consecutive stages. Different strategies S can be used in
each stage. Experts typically focus on the execution timeline within
and between stages during performance diagnosis, as shown in

Figure 2. Numbers indicate minibatch IDs. The input stage executes
four minibatches and propagates to the output stage. After the
output stage executes the forward pass for the first minibatch, all
stages begin to alternate between forward and backward passes for
all minibatches. The latter stage depends on the execution results
of the previous stage of the pipeline.
Performance issues. There are three main performance issues.
(1) Long waiting time for collective communication. Collective
communication is responsible for merging gradients or parameters
resulting from parallel processing. Affected by various factors
(such as computation amount and speed), device execution may be
uneven, resulting in long wait times for collective communication.
(2) Long waiting time between stages. When using pipeline
parallelism, the previous stage sends parameters to the later stage
through a peer-to-peer communication operator. If the previous
stage does not finish executing, the later stage will keep waiting,
making the idle time longer. (3) Communication link issues. Due
to the different bandwidths of different communication links, the
collective communication time may be longer.

4 SYSTEM DESIGN

4.1 Requirement Analysis
The general goal is to efficiently and accurately diagnose root
causes of performance issues in parallel training of large-scale
DNN models. To this end, we collaborated with 7 experts (DL
engineers with 8-10 years of experience in model performance
diagnostics, average experience: 8.5 years) from the Mindspore
team for 6 months. At the beginning of the collaboration, we
reviewed literature on mechanisms of parallelization strategies [6],
[7], [10], [11] and visual analysis of cluster performance [21],
[22], [23], and conducted a 2-hour discussion with experts every
week. The discussion content revolves around experts’ daily
model performance issue analysis, including the understanding of
parallelization strategies, key factors affecting performance (such
as bandwidth, memory, etc.), current root cause location methods
and processes, etc. Based on discussions, we refined the general
goal and correspondingly derived the following requirements to
guide the system’s design.

R1: Facilitate the comprehension of cluster parallelization
training strategy. The system should convey the parallelization
strategy to the user through a vivid visual representation, so that
the user may readily determine if the present training strategy
needs to be optimized. Currently, the process of experts reviewing
strategies is indirect and inefficient. They need to obtain the specific
strategy from the intermediate representation (IR) file which is
the code used internally by a compiler to represent source code,
and then manually draw the operator execution flow to view the
parallelization strategy of operators. If the model uses a complex
hybrid parallelization strategy, the diagnosis process will take a
long time. Efficient and easy-to-use visualizations for all kinds of
parallelization strategies are urgently needed.

R2: Convey complicated performance metrics and their
relationships. Considering that the cluster training performance
would be influenced by many factors, such as collective communi-
cation latency, communication link bandwidth, memory usage, etc.,
the system should create easy-to-understand designs to connect
different factors of performance data.

• R2.1: Provide an overview of distributed training process
over time. Experts agreed that it is required for diagnostics
to provide an overview of the execution times on each device.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

The distributed training process over time can help experts
identify the interesting training step.

• R2.2: Provide a multi-level visualization for performance
data exploration. Experts need to explore performance data
from different levels, such as cluster-level and device-level,
to discover multi-faceted patterns. The latest performance
analysis tool, Cloud TPU, displays performance metrics as
independent charts. In the process of analysis, experts need to
jump between different charts to establish a level of analysis
in the brain.

R3: Connecting the performance data with the compu-
tational graph. Experts need performance data to check when
performance issues occur by comparing with empirical thresholds.
They also need to examine the execution flow via computational
graph to identify in which the strategy need to be optimized. For
example, the input of operator A is small, but it is allocated to
4 devices for execution, resulting in high communication cost
during data merging. In addition, the experts said that they want to
connect performance data to the computational graph throughout
the diagnosing process. This connection might allow them to
effectively identify when, where, and why the anomalies occur.
However, existing tools do not provide this function. They need to
manually draw the execution flow, and use event tracking to obtain
the operator execution timestamp.

4.2 System Overview

As shown in Figure 3, the system’s workflow consists of three
key modules: a preprocessor module, a analyzer module, and a
visualizer module.

Pre-processor

Visualizer

Analyzer

..
.

Cluster

Dataset
Extract

Cluster-level view

Training process overview

Device-level view Block-level view

Computational Graph

Profiling Information
Communication Link
Parallelism Strategy

Cluster

parallelization

training strategy

Profiling

information

device + stage

namescope

Rule-based issue detection

Interaction

2
3

4

5

6

7

0

1

0 1

4

stage2

1

2

stage1

1

2

3

1

2

ascend1 FLOPS is

higher than xxx.

10 20 30 40 0 31 2 5 6 74

Fig. 3. Overview of the system workflow.

Given cluster training data for a large model, our Pre-processor
extracts data for cluster diagnosis, including computational graph,
profiling information, communication link, and parallelism strategy.
The processed data are then send to the Analyzer, which establishes
connections for different types of data, and computes summary
statistics used in issue detection. Specifically, the Analyzer first
establishes the relationship between the four processed data accord-
ing to the attributes ”device” and ”the namescope of the operator”.
Such relationship is mainly between the cluster parallelization
training strategy and the profiling information. If the model training
uses a pipeline parallelism strategy, the attribute ”stage” should
also be considered when establishing the data connection. The
Analyzer then calculates summary statistics such as the average
computational amount of a stage, the ratio of the communication

duration, the bandwidth of a communication link, the memory
consumption of an device, etc. Thereafter, the Analyzer filters these
summary statistics based on the experience thresholds of experts’
daily diagnosis to realize preliminary issue detection of training
data and provide guidances for diagnosis.

The Visualizer module allows the user to explore the cluster
training dynamics at the cluster-level, the device-level, and the
block-level, which corresponds to experts’ typical diagnostic
procedure. The overall temporal dynamics of all devices in the
training cluster are shown in an Overview (R2.1). The user can pick
the desired training step by clicking on the curve. After selecting
the desired step, the Visualizer presents the training dynamics
at three different levels (R2.2). At the cluster-level, the cluster
topology view shows cluster communication. At the device-level,
the profiling view shows the execution of the operator on each
device. At the block-level, the parallelism strategy view uses a
computational graph as a medium to present parallelism strategies,
which is convenient for users to view the strategy of the operators
of interest (R1). All views are dynamically coordinated through
interactive linking, allowing seamless exploration of cluster training
dynamics data from different perspectives (R3).

5 VISUALIZATION

Based on the design requirements, we explain the design decisions
and interaction designs of our system. As shown in Figure 4, our
system contains two interactively coordinated views to facilitate
the exploration of the distributed training data.

TABLE 1
Terminology used in our paper.

Term Explanation

operator A mathematical computation in the model layer.
namescope Used to group operators based on computational logic.
tensor The input data or output data of an operator.
operator block Operators assigned to a device in the cluster.
minibatch A slice of training data in pipeline parallelism.

5.1 The Parallelism Strategy View
According to the analytical habits of experts, the parallelism
strategy view (Figure 4(A)) employs a computational graph to
present parallelization strategy. The left panel (Figure 4(A1)) is
used for computational graph configuration. The component on
the top is a namescope selector for the graph. When users select a
namescope, the corresponding operators in the namescope will be
highlighted in the graph. The checkboxes in the middle are used to
control the display of different types of edges in the computational
graph. The illustration of the training stages on the bottom shows
the data flow between stages through several send and receive
operators.

5.1.1 Computational Graph Layout
A computational graph is a directed graph which expresses
mathematical expressions in language of graph theory. Nodes of
the graph represent operators, and edges indicate input tensors and
output tensors between them. Several deep learning frameworks,
including TensorFlow [35] and MindSpore 2, utilize namescopes to
produce a hierarchically structured graph representation. Sugiyama

2. https://github.com/mindspore-ai/mindspore

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

A

A1

A2

B

B1

B2

B3

(a)

(b)

(1)

(2)

(3)

1

1 1

12

2 2

23

3

4

4 4

4

3

3 (4)

4 1 1 1 4 1 1 1

5_resnet_pipeline_4p

Fig. 4. Our system contains two main views. (A)The parallelism strategy view presents parallelization strategies using a computational graph.(B) The
profiling view shows complex performance data metrics and their relationships. The interactions between views facilitate the understanding and
diagnosing the parallel training process.

Algorithm [36] is one commonly used method to draw the
computational graph in a hierarchical layout. However, sometimes
experts might not understand the execution logic of operators
because nested namescopes make experts lose the execution context.
To improve the comprehensibility of the execution logic in the
computational graph, we improve a force-directed graph layout
by applying the execution sequence of operators to constrain the
repulsive force against each node. The specific implementation
steps are as follows.

1. Configure the type of edge. Considering that the com-
putational graph of a large-scale model contains a large
number of edges, resulting in visual clutter and low rendering
performance, we configure the type of edges for users to
choose which edges can be hidden. Through discussions with
experts, edges in a computational graph can be divided into
primary logical edges (Figure 5(b)) and secondary logical
edges (Figure 5(a)) executed by operators. The secondary
edges mainly include large span edges between forward and
backward propagation, etc. Currently we have configured
seven types of edges.

(a)

(b)

Fig. 5. The secondary logical edges (a) and the primary logical edges (b)
of DNN model.

2. Calculate the force between nodes and determine the
position of nodes. After model training, the operator execution

sequence is generated. To obtain the final position of the
nodes, we start by giving the nodes in the computational
graph a random initial position, then traverse the execution
sequence file and adjust the positions of the nodes in the graph
accordingly. The adjustment details are as follows.
In the x-axis direction, suppose operator A is executed before
operator B. The initial Euclidean distance and the expected
distance between A and B are denoted as d and a, respectively.
The difference between the actual distance and the expected
distance ∆d is (d −a). If ∆d > 0, the distance between A and
B is larger than expected, and we need to reduce repulsion
to pull B closer to A. If ∆d < 0 and |∆d| < d, the distance
between A and B is smaller than expected, and we need to
increase repulsion to push B apart to increase the distance
between A and B. If ∆d < 0 and |∆d|> d, the B is drawn in
front of A, and we need to pull B behind A to gurantee the
correct execution order.
In the y-axis direction, we keep nodes as close to the central
axis as possible to make nodes more compact. In our pre-
experiment, we discover that the computational network has
a substantial number of special nodes, which do not affect
the main logic, such as load and updateState nodes used for
data preparation. We treat them as subordinate nodes of other
primary logical nodes. If we draw these nodes together with
the main logic node, it will bring visual clutter and reduce
the understandability of the execution logic. Therefore, we set
their ordinate values above the main logic. In addition, there
is a special topology that two nodes point to a successor node
at the same time. In such case, the two nodes will coincide
if nothing is done. Thus, we conduct collision detection to

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

separate the positions of the nodes.
3. Chunk the computaional graph and recompute the

positions. In pipelined parallelism, communication between
different stages relies on Send op and Receive op operators.
For example, after the execution of stage1, the parameters
are transmitted to stage2 through a Send op operator, and
then in stage2, the parameters are received by a Receive op
operator. In order to vividly present the execution logic
of the computational graph under the pipeline parallelism
strategy, we take the Send op and Receive op operators as
the boundary to divide the computational graph into small
blocks, and recalculate the positions of these blocks according
to the execution order of the paired Send op and Receive op
operators. After recalculating the position of the stages, the
user can clearly see the dependencies of the stage execution.
As shown in Figure 2, the operator block 2 in stage2 depends
on the execution of stage1’s operator block 2 and stage2’s
operator block 1.

5.1.2 Visual Encoding
Considering the parallelization strategy S = (ns,np1 , ...,npn), using
a 1D vector to show how the output tensor of an operator op
is partitioned, we employ a set of rectangles to represent the
parallelization of op, as shown in Figure 4(a). Each rectangle
represents a parallelizable dimension in output tensor. In each
rectangle, the specific number represents the number of partitions
of the dimension, while the background color denotes the same
information to provide users with intuitive perception. We place
the set of rectangles along the edge, in line with the user’s
comprehension of the data flow. Using this representation, almost
all parallelization strategies except pipeline parallelism can be
presented. The pipeline parallelism is presented through vertically
arranged blocks. Before finally deciding on using a set of rectangles,
we considered an alternative visual design. Inspired by the strategy
illustrations in Deepspeed 3, we designed different glyphs for
different strategies and placed them on the corresponding operators.
However, in the face of diverse hybrid parallelization strategies,
this design is poorly scalable and prone to visual clutter.

To show the namescopes information, a circle blur background
is added below the node (Figure 4(b)). Different namescopes
are distinguished by color. Considering that there are many
namescopes, it would be visually cluttered to use colors to
distinguish all namescopes. Thus, we only present the user-selected
namescopes, and the number of the selected namescope should be
less than ten. Users can select the namescopes of interest in the
configuration panel on the left. Before finally deciding on using
the circle blur background, we have considered two alternative
visual encodings. The first one is to use the traditional aggregation
method in which the nodes in a namescope are aggregated into one
group node [20]. However, such a design affects the perception
of the operator’s execution logic. Another alternative is to use the
color of nodes to distinguish namescopes. However, the color is
hard to identify when the graph is zoomed out.

There are three kinds of operators related to the parallelization
strategy, namely, the operator whose output tensor is partitioned,
the operator used to redistribute the tensors, and the operator used
for communication. They are denoted by colors. The statistics
of these operators are listed in the upper right panel, providing

3. https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-
scale-model-training-for-everyone/

an overview of the parallelization strategy. When users select a
node, the detailed attributes are shown in the lower right panel.
Combined with the shape of the operator’s output tensor (shape) in
the attribute panel and the parallelization strategy of the operator in
the computational graph, we can analyze whether the parallelization
strategy is reasonable. For example, if the shape is [64,8] and the
strategy is [4,1], indicating that the 64×8 tensor is divided into
four pieces. This division is unreasonable because each piece is too
small.

Since the computational graph is too long and narrow, a
minimap is provided at the bottom to facilitate the exploration.
Since the nodes are not aggregated by namescopes, the number of
nodes is large, affecting the rendering performance. It is common
that the computational graph contains similar substructures, such
as optimizers for the reduction of loss. We automatically identify
similar substructures in the computational graph and stack them,
as shown in Figure 4.

5.2 The Profiling View
The profiling view (Figure 4(B)) contains a training overview, a
cluster topology view and an extened Marey’s graph to demonstrate
performance data at different scales.

5.2.1 The Training Overview
The training overview (Figure 4(B1)) aims at revealing an anomaly
overview of the important tracking metrics, including total training
time and communication cost of each device, over training step.
The overview demonstrates the whole profiling data in a temporal
context. The dual-axis linechart on the left shows the time
comsumption in terms of different metrics at every step. The left y-
axis denotes the total training time of each device, while the right y-
axis denotes the average communication cost of devices, including
communication duration and waiting duration. A categorical color
scheme is used to denote different metrics. When users select a step,
the stacked barchart and linechart on the right shows the detailed
information of every device in this step. The stacked barchart
denotes three parts of the training time, including step interval (i.e.
data preparation), forward and backward propagation, and step tail
(i.e. collective communication). The linechart overlapped on the
stacked barchart shows the communication duration and waiting
duration of each device.

5.2.2 The Cluster Topology View
Parallel model training performance is strongly reliant on the
execution environment. The cluster topology and characteristics
in the environment decide how fast data can be transmitted and
facilitate the comprehension of training behavior. In the cluster
topology view (Figure 4(B2)), we use a DAG to present the
topology and its characteristics, including link type, and the
rate of communication duration, of the selected training step.
The nodes of the graph represent devices, while edges indicate
communication between devices. The size of the nodes denotes the
total communication cost, including communication duration and
waiting duration. The color of the nodes denotes the proportion of
communication duration in total communication cost.

When users click an edge or lasso-select the desired nodes,
an adjacency matrix is drawn using the NodeTrix visualization
technique [37]. It is convenient to display several metrics, namely,
communication duration, taffic, and bandwidth of the link. A
categorical color scheme is used to present different metrics. The

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

rows and columns of a matrix indicate the source devices and the
target devices, while cells indicate the communication links. If there
is a communication link between two devices, the corresponding
cell will present the link metric information using two types of
chart. The bars show the sum of the communication duration
and traffic of different communication operators on this link. The
boxplots show the distribution of communication duration, traffic,
and bandwidth of each communication operator using this link.
The background color of each cell in the matrix is the same as the
edges in the DAG, representing the link type.

5.2.3 Enhanced Marey’s graph
The enhanced Marey’s graph (Figure 4(B3)) is used for profiling
data analysis. Directly using a Marey’s graph would cause the
device’s execution time and idle time to be missed, affecting the
effectiveness of anomaly analysis, we introduce the concept of
time-span and a banded visual metaphor to enhance it. Because
misaligned device timestamps would lead to visual clutter, espe-
cially when zooming in, we align device timestamps according to
the semantic context of operator execution. To support smooth
exploration, a visual aggregation technique is applied to the
horizontal and vertical orientations of our enhanced Marey’s graph.

Visual Encoding. Marey’s graph is commonly used to analyze
bus or train schedules. Stations are plotted on the y-axis, and x-
axis denotes time. Each station corresponds to a time axis. Each
polyline represents a bus or a train, with each time point indicating
when it is scheduled to arrive at a station (Figure 6(a)). This visual
encoding can be directly used to data profiling if each device in a
cluster is considered as a station and the time at which an operator
begins executing on each device is considered as the time in bus or
train timetables (Figure 6(b)). This forms the execution-starting line
which traces the parallel execution status of an operator in a cluster,
which is similar to the extended Marey’s graph in ViDX [27].

D
ev

ic
es

time

D1

D2

D3

D4

op1op2op3op4

time

S
ta

ti
o

n
s op1op2op3op4

start time end time

op1op2op3op4

FLOPs memory

(a) (b) (c) (d)

Fig. 6. The original Marey’s graph and the design evolution when applied
to profiling data. (a) The original Marey’s graph used to analyze the
bus/train timetables. (b) The directly adoption of Marey’s graph to the
profiling data. (c) The extention by introducing the concept of time-
span, and showing an operation using a band. (d) The extra information
encoding.

However, the completion history of operators on each device
cannot be seen with a polyline that encodes the execution start time
due to the characteristics of parallel training. In parallel training
scenarios, operators are trained in parallel between devices, rather
than serial bus/train schedules between stations. And it is common
for the device to have idle time between operator executions,
which means that the execution of the next operator does not start
immediately after one operator completes. Thus, we introduce the
concept of time-span. In addition to the execution-starting line, a
line that indicates the end of the execution (execution-ending line)
is drawn. And the space between them forms a band by means
of coloring (Figure 6(c)). The color of the bands represents the
operator type. As shown in Figure 4(B3), the green bands encode
computational operators in forward and backward propagation, the

yellow bands encode collective communication operators. As for
peer-to-peer communication operators, the purple bands encode
Send op operators, the blue bands encode Receive op operators.
The band shows the completion condition of the operator on each
device. Differences of operators’ execution can be shown from
two aspects. One is the width of the band at the intersection with
the time axis (intersection width), as shown in Figure 7(b). The
other is the height of the triangle formed by the left and right
boundaries of the band (triangle height), as shown in Figure 7(c).
Particularly, the two boundaries are of adjacent devices and the
bottom of the triangle is determined by the corresponding width
of the band. In addition, the time axis of each device is further
indicated by a flattened line chart, in which FLOPs (floating point
of operations) and memory information are depicted. On the left
side of the view, we use a tree structure to denote participating
devices at different training stages, and a pixel map to denote the
relative size of FLOPs, FLOPS (floating point of per second) and
peak memory for different devices.

The enhanced Marey’s graph shows profiling data that allows
the inspection of when and on which device the delay occurs.
Moreover, the set of visual patterns emerging from the visualization
can be used to analyze the causes of the delay. The users can
identify delays, visually indicated by the thick intersection widths,
or the small triangle hights. Figure 7 demonstrate the different
types of visual patterns, which are listed as follows.

• Normal efficient operators. In Figure 7(a), the intersection
width on each time axis is uniform and not very thick for each
operator, that is, the polylines between the two time axes are
nearly parallel to each other and the triangle height can be
infinity. This visual pattern indicates operators are executed
smoothly on each device without delay.

• Long-executing operators on all devices. In Figure 7(b), the
intersection width on each time axis is uniform for each oper-
ator. But the band of the operator op2 is abnormally thicker
than others, indicating that the execution time of this operator
is too long on all devices. This might be a normal execution
pattern where the long execution time is determined by the
operator’s own characteristics, such as the CombineMomentum
operator. It might also be an abnormal execution pattern. For
example, an unreasonable parallelization strategy can lead to
excessive collective communication costs, causing the entire
training to be stuck on a collective communication operator.

• Long-executing operators on partial devices. In Figure 7(c),
the triangle height h1 between the devices D3 and D4 on
the band of the operator op1 is too small, indicating that
the execution time of op1 is delayed on D4. Consequently,
D1, D2 and D3 must await D4 to complete op1 before
they can start collective communication, which therefore
causes communication latency on D1, D2 and D3. The
communication latency can be recognized through the small
triangle height h2.

Alternative Visual Designs. Several design alternatives were
considered, as shown in Figure 8. The first and most intuitive one is
to use Gantt chart [38](Figure 8(b)), a visual design using parallel-
stream timelines, in which parallel data streams are projected onto a
time axis. It is often used for schedule management, showing work
completed in a certain period of time. The profiling data patterns
are possible to be conveyed through Gantt chart. However, when
the distance between visual components rises, visual sensitivity to
spatial alignment diminishes [39]. Consequently, when the number
of devices in the cluster increases vertically, the user’s ability

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

D1

D2

D3

D4

op1 op2 op3 op4

(a)

op1 op2 op3 op4

width

(b)

op1op2 op3 op4

h1 h2

(c)

Fig. 7. The visual patterns of the enhanced Marey’s graph. (a) The
operators are executed smoothly on each device without abnormal delay.
(b) The whole parallel training is stuck at the execution of op2. (c) The
execution of operators is delayed on partial devices.

to discern concurrent status and delay across devices may be
compromised. In our enhanced Marey’s graph, vertical lines that
connect the time points where operators start or end execution on
each timeline are used to enhance user space alignment capabilities.
Another alternative is temporal mosaics [40]((Figure 8)(c)), which
employs a compact way to display concurrent event streams in
a specific drawing area, dividing the area proportionately based
on the number of concurrent events. However, it need to use
color to distinguish the execution sequences in different devices.
Considering there will be many devices in a cluster, too many colors
can be visually confusing. In our design, we adopt a parallel layout
of device timelines, which is easy to compare patterns between
devices. In regular discussions with experts, they concluded that
“When the number of devices is small, all three designs can convey
patterns well, but as the number of devices increases, only the
enhanced Marey’s graph can effectively locate the delays.” This is
consistent with our analysis.

D1

D2

D3

D4

op1 op2 op3 op4 op1 op2 op3 op4 op1 op2 op3 op4

(a)

D1 D2 D3 D4

(b) (c)

Fig. 8. The design alternatives presenting the same example data: (a)
our design, (b) Gantt chart, (c) temporal mosaics.

Timestamp alignment. The timestamps captured across mul-
tiple devices may not be aligned. That is, issues such as network
latency and out-of-sync device clocks can cause timestamps
to be inconsistent across multiple computing devices. When
diagnosing intra-stage execution anomalies, the misalignment of the
timestamps of each device has little effect on the analysis. Whether
aligned or not, the thickness of the band’s intersection with each
time axis and the angle formed by the band’s two polylines between
two adjacent time axis will not change, as shown in Figure 9(a).
But from a visual point of view, after the oblique band is enlarged
to a certain extent, it will become a straight band in the visible area,
and the execution context will be lost, as shown in Figure 9(b).
Through discussions with experts, the gradient aggregation operator
AllReduce requires all devices to participate simultaneously, which
is suitable to achieve timestamp alignment. Thus, we find the
first AllReduce operator on each device and align them. And
then other operators on the devices are offset according to the
offset of this AllReduce operator, as shown in Figure 9(c). When

analyzing inter-stage execution status, misaligned timestamps can
cause users to see out-of-order minibatches. In pipeline parallelism,
peer-to-peer communication is performed between minibatches
through Send op and Receive op operators. As shown in Figure
2, after stage1 executes minibatch 1, it will pass the parameters to
stage2 through the Send op, and stage2 will receive the parameters
through the Receive op. Through discussions with experts, we
find the first pair of Send op and Receive op operators and align
them, and then shift the remaining operators accordingly. After the
timestamp alignment is completed, the pipeline parallelism strategy
can be intuitively perceived (Figure 8(d)).

D1

D2

D3

D4

D1

D2

D3

D4

S
ta

g
e

1
S

ta
g

e
2

S
ta

g
e

1
S

ta
g

e
2

(a) (b)

(c) (d)

Fig. 9. The illustration of the timestamp alignment using an example
pipeline with two stages each running on two devices. (a) The misalign-
ment of the timestamps of each device. (b) When zoom in (a) to a certain
extent, bands become straight. (c) The result after intra-stage timestamp
alignment. (d) The result after inter-stage timestamp alignment.

Visual Aggregation. Despite the fact that the enhanced Marey’s
graph could present a variety of visually appealing patterns, it has
poor rendering performance owing to a large number of bands. A
compelling option is the use of Kernel Density Estimation (KDE),
which estimates the density of the lines and generates a heat map
based on that estimation. However, it obscures the visual pattern
characterized by the shape of the band. In this study, we summarize
density with a histogram. Based on experience, communication
operators are more concerned by experts in the diagnosis process,
and the number of communication operators is much smaller than
that of calculation operators. Thus, we aggregate only the bands of
computational operators and keep that of communication operators.
When forming the histogram, we first group the bands in the visible
area into bins and calculate the density of bands that fall into each
bin. Once the density in the bin is greater than the average density,
we merge the bands in this bin, which will greatly reduce the
number of drawn bands and improve the drawing efficiency. The
number of bins controls the coarseness of the density distribution.
Through experiments with different bin sizes, We finally decided
to horizontally divide the visible area of the view into 100 bins. In
addition, we provide brushing and zoom-in interaction to enlarge
the selected range horizontally to the entire graph width. After
users complete brushing, we recalculate the density and aggregate
the selected range. Moreover, the chart expands vertically as more
devices are added to the cluster. Due to the limited height of the
screen space, We aggregate devices of the same stage together. As
shown in Figure 4, users can control the expansion and aggregation
of devices through the tree selector on the left. The aggregated
row displays the average, maximum, and minimum values of the
operator’s start and end execution times across devices, revealing
the execution overview of operators.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

5.2.4 Rule-based Issue Detection

To facilitate the diagnosis of parallel training, we automatically
detect performance issues in profiling data prior to user exploration
based on empirical thresholds provided by experts. The prompt
information is displayed at the front of the corresponding line in the
enhanced Marey’s graph through a red cross glyph (Figure 4(B3)).
When hovering over the glyph, the specific prompt information
will be displayed. We currently only have empirical thresholds for
two metrics, namely, FLOPS and FLOPs. For FLOPS, when the
FLOPS value of a device is 20% lower than the average value of
each device, the overall performance may suffer. Users should keep
an eye on that device. For FLOPs, when the average computation
amount of devices in a stage is 20% higher than the average of each
stage, users can try to optimize the pipeline parallelism strategy to
balance the computation amount of each stage.

5.3 Interactions Among the Views

Our system provides users with rich interactons to facilitate an
efficient joint analysis of performance data and parallelization
strategy data. After users select a training step in the training
overview, they can diagnose the root cause of performance issues
in the remaining views. (1) Diagnosing the long waiting time
for collective communicaiton. Users identify a delay in the
enhanced Marey’s graph, and identify the device dt and the operator
opt that cause the delay. Then, users click opt in the enhanced
Marey’s graph, and the parallelism strategy view will highlight the
corresponding operator and namescope. Users view the attribute
information and parallelization strategy of opt . Combined with
the FLOPs of dt , users can analyze whether the distribution of
computation amount among devices is reasonable. Users can also
analyze whether dt is a slow computing device by the FLOPS of
dt . (2) Diagnosing the long waiting time between stages. Under
pipeline parallelism, users find that the stage staget has a long idle
time during the training process in the enhanced Marey’s graph.
Then, users observe how the computational graph is partitioned into
different stages in the parallelism strategy view. Combined with
the average FLOPs of different stages, users can analyze whether
the distribution of computation amount among stages is reasonable.
(3) Diagnosing the long collective communication time. After
users identify the devices with longer communication time in the
training overview, they switch to the cluster topology view to brush
the corresponding devices. In the popup matrix, users can compare
the characteristics of different links to determine whether there is a
slow link. (4) Tracking the parallelization strategies. When users
find no performance issues in the profiling view, they can track the
different phases of model training by selecting the namescope in
the parallelism strategy view. They can then drill down to the phase
of interest, and track the parallelization strategies of the operators
along the execution logic. At the same time, they can click an
operator and check the performance information in the profiling
view. Users can judge whether the parallelization strategies still
have room for improvement based on their own experience.

6 EVALUATION

6.1 Case Study

We evaluate the usability and effectiveness of our approach by
analyzing two large-scale models. These cases were discovered by
one of our co-authors, the expert E.

6.1.1 Case 1: Understanding the Parallel Training Process

In the first case study, we used the PanGu-α model with 13
billion parameters [41], which is built by Mindspore and trained
on a cluster of 16 devices. The model input data are sentences
consisting of words. The words and their position information are
vectorized using an embedding algorithm. After loading the data,
E noticed there was only one stage, indicating that the pipeline
parallelism strategy was not used in the model training. No prompt
information was displayed. He noticed that the 16 participating
devices performed equally well on metrics of communication,
computation, and memory usage. Then he tracked the parallel
training process in the parallelism strategy view. First, he checked
the parallelism strategy of the Embedding layer at the beginning
of the model. He started from the AllGather operator, and along
the main logic of the computational graph, he found the Gather
operator whose namescope is word embedding-VocabEmbedding.
The Gather operator took two inputs, namely, the data from the
StridedSlice op7776 operator and the parameter from the load op2
operator. He noticed that the parameter is a 40000× 2560 2D
matrix without parallelization, which might need to be optimized
(Figure 10). According to his diagnostic experience, we need to
parallelize the input parameters, that is, use a model parallelism
strategy to optimize model performance. Furthermore, he explored
the remaining training process by selecting the namescope of
interest.

Fig. 10. Identified the operator Gather that might need be optimized.

6.1.2 Case 2: Diagnosing the Cause of a Training Anomaly

We conducted the second case study with the Resnet-50 model [4]
consisting of 1120 nodes and 1629 edges, which is trained on the
cluster of 4 devices. E started by using the training overview to
select Step 1 for detailed inspection. In this view, he observed
that the communication costs of devices 2 and 3 are relatively
larger than the others (Figure 4(1)). Then he switched to the cluster
topology view. He brushed the nodes representing device 2 and
device 3. In the pop-up adjacency matrix, he identified an abnormal
communication operator (Figure 4(2)). However, he was confused
that the abnormal operator had the maximum bandwidth and
communication duration at the same time. By clicking the abnormal
operator, he noticed that the intersection width is abnormally thick
in the enhanced Marey’s graph (Figure 4(3)). To further identify
the root cause of the communication delay, he brushed all devices
in the cluster topology view. As shown in Figure 11, the traffic
between device 0 and device 1 was less than the traffic between
device 2 and device 3, while the bandwidth of all devices was about
the same. Thus, the communicaition duration between device 2
and device 3 was longer. What’s more, he also found an interesting
phenomenon. The abnormal communication operator, which uses

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

the link between device 2 and device 0, has maximum bandwidth
and the minimum communicaition duration.

Fig. 11. Communication metrics for links between all devices when
training Resnet-50. A cell with a white background represents no link
between two devices.

E noticed that the pipeline parallelism strategy was adopted.
The parallelism strategy view showed the pipeline with two stages
each running on two devices. He selected namescopes through the
namescope selector, and found that there were four minibatches
in the pipeline. The illustration of the timeline for the pipeline
is shown in Figure 4(4), which is similar to Figure 2. Then he
noticed that stage 1 had more computation than stage 0 in both
the parallelism strategy view and the enhanced Marey’s graph. To
verify the guess, he hovered on the pixel map denoting FLOPs, and
found that the FLOPs of stage 1 were slightly larger than those
of stage 0. In addition, he boldly guessed that maybe he could
combine the parallelism strategy view and the enhanced Marey’s
graph to find a reasonable parallelization position.

6.2 User Study
The user study is conducted to prove that experts can diagnose
the root cause of performance issues in parallel model training
efficiently and accurately using our system. To show that our system
performs better, we contrast it with the Cloud TPU, a state-of-the-
art tool for diagnosing performance issues (Figure 12). In order
to show the importance of the parallelism strategy perspective in
performance diagnosis, we also compare our entire system with
the profiling view of our system.

6.2.1 Experimental Design
Tasks. After the discussion with experts, we design two tasks, each
of which has several questions.

T1: (R1) Explore and understand the parallelization strategies
using the PanGu-α model in Case 1. This task is designed on the
basis of Case 1.

• Q1: What parallelization strategies are used in model training?
• Q2: Find the Gather operator in the namescope embedding-

EmbeddingLayer, check its predecessor and successor opera-
tors, and then describe the parallelization of the input position
vector and word vector.

T2: (R2, R3) Diagnose the root cause of performance issues.
• Q3: Using the Resnet-50 model in Case 2, participants need

to diagnose performance issues and identify the root cause.
This task is designed on the basis of Case 2.

Participants and apparatus. We recruited 30 participants (10
females and 20 males; graduate students and DL engineers with

(a)

(b)

(c)

Fig. 12. Cloud TPU contains different modules, including (a) com-
putational graph, (b) trace view and (c) profiling metric visualization.
Users can use the computational graph to view operator attributes and
parallel allocation. The trace view displays the execution records of
operators. Metric visualization provides an overview and details of training
performance. There is no explicit linking between modules.

6-9 years of experience in cluster diagnostics, average experience:
7.12 years) for the user study. Participants were invited to our
lab where they complete the tasks on the same 1920 × 1080
display with a Chrome browser to maintain a consistent en-
vironment. The source code for our system can be seen at
https://gitee.com/zerowangzy/mindinsight.
Procedure. The tools we need to compare include the Cloud TPU
(CT), our entire system (En), and the profiling view of our system
(Pr). To prevent learning effects from affecting the experimental
results, we split the participants into three groups, each of which
used a single tool for all tasks. We first described the visual
design and system interactions prior to the formal study. Then,
in order to further their grasp of system interactions, we present
diagnostic examples. After completing the tutorial, the participants
are required to perform the tasks and rate their confidence in
answering each question on a five-point Likert scale, ranging from
1 (lowest confidence) to 5 (most confidence). We encouraged them
to think aloud during their exploration. Finally, we conducted an
interview with participants.

6.2.2 Results

T
im
e(
s)

A
cc
u
ra
cy

C
o
n
fi
d
en
ce

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

CT En Pr

40

80

0.4

0.8

2

4

(a) (b) (c)

Fig. 13. The average (a) completion time, (b) accuracy, and (c) confidence
of the user study when using the Cloud TPU (CT), our entire system
(En), and the profiling view of our system (Pr). Note that there are no Pr
results for Q2, because Q2 requires the hierarchical structure information
of operators, which is not provided in the separate performance view.

We collect all the results from the study, including the
completion time, the answer, and the confidence in answering each
question. The answers are transformed into accuracy by comparing
the participants’ answers to accurate answers. Then the mean and
standard deviation of the completion time, accuracy, and confidence

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

are calculated. We observe three findings from the result (Figure
13).

• Our entire system could facilitate the comprehension of
cluster parallelization strategy. As shown in Figure 13(b),
the mean accuracy of En is higher than that of CT in Q1 and
Q2. And the mean confidence of En is also higher than that of
CT in Q1 and Q2 (Figure 13(c)), indicating that participants
could have a clearer understanding of the strategy when using
our system.

• Connecting the performance data with the computational
graph would facilitate more accurate root cause diagnosis.
In Figure 13(b), the mean accuracy of En is higher than that
of Pr in Q3. And in Figure 13(a), the mean completion time
of En is also lower than that of Pr in Q3. This indicates
that participants could diagnose performance issues relatively
quickly and well.

• Our entire system could help improve diagnostic efficiency.
In Figure 13(a), the mean completion time of En is the lowest
among three tools in Q3, indicating improved diagnostic
efficiency. Some participants reported that in the process of
using Cloud TPU, it is necessary to remember the currently
concerned operator and switch pages for further search and
analysis.

DeviceID

Communication

duration(ms)

Waiting

duration(ms)

Operator

information

Link

information

more

more

more

more more

more

more

more

(c)

Operator name Communication duration(ms) Waiting duration(ms)

(b)

(a)

Load file iter245.trace

Fig. 14. The interactive analytic process using the Cloud TPU.

To further examine how our system is better, we observe
the operation processes of the participants and summarize the
interactive analytic process using Cloud TPU, as shown in Figure
14. We note that, when diagnosing the root cause of performance
issues, participants must utilize various documents to do switching
comparisons in multiple views. This makes the analysis inefficient,
and it is difficult to discover the root cause of issues. Using
the cluster communication data, participants determine that the
communication duration and waiting duration of devices 2 and
3 are anomalous (Figure 14(a)). Then, by examining operator
details, it is determined that the operator allReduce 237 245 has
an abnormal communication duration (Figure 14(b)). To identify
the root cause of the communication issue, they use the trace view
to examine the operator execution state and check for long-running
operators on the selected device (Figure 14(c)). Other than the

communication operator, however, there were no other abnormal
operators. In order to confirm the root cause further, they examine
the operator execution state of devices 0 and 1 that are not suffering
communication issues. Unfortunately, only one device’s operator
execution state can be displayed in the trace view. If they intend to
examine with additional devices, they must reload the trace file. If
they intend to inspect the execution context of the desired operator,
they must switch to the computational graph and search for the
operator. The Cloud TPU’s computational graph has a hierarchical
architecture, which is not conducive to matching the execution
logic of operators. In addition, when participants encounter the
pipeline parallelism strategy, they must switch between different
stages and are unable to observe the execution relationship between
stages, making it difficult to get more insights.

6.3 Expert Feedback
We summarized the expert feedback from the user study as follows.

System. Experts were all impressed by the system, commenting
that the system was useful and user-friendly for cluster diagnostics.
They all agreed that the parallel strategy data and performance
data were well integrated, especially when they found that when
exploring abnormal communication operators, they can see multiple
aspects of information in different views. One expert commented
that “Usually I have to jump between different data to identify
an abnormal communication operator, but now I can recognize it
directly and find the cause easily”. Another expert said that “The
computational graph is well combined with the performance data,
and it is easy to return to the model structure for analysis after
reviewing the model execution results. It is a pity that the current
data does not support one-to-one matching of operators before and
after model compilation”. In addition, some experts commented
that the workflow of the system was consistent with conventional
analysis methods, making it easy to use. However, all the experts
felt that they needed to learn a lot of things at the beginning of
the use. Some experts suggested that the system could include a
tutorial and give prompts for the next interaction, and adviced that
some temporarily unnecessary views could be collapsed to make
the interface simpler.

Visual designs. Concerning the visual designs, all experts gave
positive feedback. They agreed that they could fully understand
the visual encoding of the system after our introduction. The
cognitive load is acceptable. Some experts mentioned that the
enhanced Marey’s graph was very straightforward representation
of the operator execution data, and the integrated linechart was
useful to track FLOPs and memory dynamics. One expert liked
the design for the cluster topology, and stated that “The visual
encodings and interactions of the cluster topology view is useful for
cluster-level cause location”. Some experts agreed that the layout
of the computaional graph could enhance the comprehension of
operator execution logic, and recognize whether the distribution of
operators was evenly between stages. However, they also felt that
the graph was narrow and long, especially when the model was
very large. Fortunately, the namescope selector could speed up the
exploration.

7 DISCUSSION

Target Users. Our system is designed for model parallel training
experts. They can use the system to understand the parallelism
strategies through the parallelization forms of a tensor, and combine
profiling data to diagnose the root cause of performance issues.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Though we have provided anomaly information prompts, the target
users must have training experience with large-scale models.
Scalability. A large quantity of performance data and strategy
data are generated in a cluster parallelization training process.
Displaying data directly without processing can lead to system
failure. On the system’s backend, we precompute summary
statistics utilized in the visualizations and cache the results to
accelerate response time. In addition, we have designed some
schemes to improve the rendering performance of the computational
graph and the enhanced Marey’s graph. The primary purpose of
schemes is to decrease the amount of components presented on a
page. Specifically, our performance optimization for computational
graphs is reflected in two aspects. First, we configure the type of
edge and hide a large amount of edges that are not important for
the comprehension of the main logic. In addition, we automatically
detect similar substructures and stack them. Second, we only draw
nodes within the viewable window. As for the enhanced Marey’s
graph, we aggregate a large number of operators horizontally
by density, and perform vertical multi-level aggregation for a
great number of devices. Moreover, only the data within the
selected range is displayed during the process of brushing and
zooming in. Besides MindSpore, our system is applicable to
other deep learning frameworks. It only needs to preprocess the
data into the appropriate format in the data processing stage.
As the model’s scale is further increased, experts may propose
new parallelism strategies. Our proposed visual design for the
parallelism strategy can support practically all parallelism strategies
since we employ partitions of operators’ output tensors to describe
various parallelism strategies.
Limitations. Data is one of our primary design concerns. We have
discovered concerns with data volume and quality.

Mismatch of operators: When conducting interactions among
views, the operators in the parallelism view cannot be matched
to the operators in the profiling view one by one. This is caused
by the characteristics of the underlying data. We use the pre-
compiled model data to draw a computational graph, while the
profiling data used for the cluster topology view and the enhanced
Marey’s graph is the model data compiled and optimized by the
deep learning platform. The platform usually conducts a series of
optimizations to improve model performance, such as automatically
generating namescopes, merging communication operators, adding
communication operators, etc., resulting in the inconsistency of
operators before and after compilation. Therefore, users can only
recognize operators with the same namescope as the selected node.
Our system analysis would be more accurate if we could build a
tracker that generates mapping data between pre-compiled model
data and post-compiled model data.

A substantial number of operators: In order to accurately convey
the execution order of computational graph operators, we open all
namescopes and draw operators directly. This will greatly increase
the number of nodes in the computational graph, affecting rendering
efficiency. Our similar substructure stacking can optimize efficiency
to some extent. More solutions need to be explored, such as expert
configuration of stackable structures, optimization of graph layout,
etc. In order to maintain the execution order of the operators,
we add the execution order to the force-directed layout, making
the computational graph narrow and long. Especially for very
large models, the interaction can be very inefficient. We have
designed the namescope selector to facilitate the exploration of
the comptational graph with automatic jumps. The exploration
efficiency under hyperscale data needs to be improved.

Future work. There are several possible future work directions.
Computational graph layout optimization: In our current

implemented graph layout, the expected distance a between nodes
is a constant, i.e., a is the same between every pair of nodes.
We can consider setting different a according to the semantic
correlation between nodes to further improve the readability of the
computational graph.

Automatic detection of performance issues: Our system auto-
matically detects performance data based on expert experience
thresholds. Furthermore, data mining algorithms can be designed
to mine abnormal patterns.

Online analysis: Currently, all training data is gathered offline
and then supplied into the analysis tool for further analysis. With
online analysis, experts are able to monitor real-time running
outcomes and halt inefficient training promptly. Experts can also
observe the impact of different strategies on training.

8 CONCLUSION

In this paper, we propose a novel visual analysis approach for
the application area of diagnostics of parallel performance in
training large-scale models. We design and implement a multi-view
interface to effectively convey complicated performance metrics
and parallelization strategies. Analysts are allowed to flexibly
identify performance issues at different levels with multi-faceted
patterns. In particular, we extend Marey’s graph by incorporating
the concept of time-span and a banded visual metaphor to convey
training dynamics. In addition, we improve its visual scalability by
horizontally and vertically aggregation. The execution sequence
have been introduced to the computaional graph layout to facilitate
the comprehension of parallelization strategies. Two case studies
using large-scale models demonstrate the effectiveness of our
approach. In the future, we plan to further enhance our scalability
to make the exploration of large models more efficient.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] S. Yang, Y. Wang, and X. Chu, “A survey of deep learning techniques for
neural machine translation,” arXiv preprint arXiv:2002.07526, 2020.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[5] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen et al., “Deep
speech 2: End-to-end speech recognition in english and mandarin,” in
International conference on machine learning. PMLR, 2016, pp. 173–
182.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, 2012.

[7] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang et al., “Large scale distributed deep
networks,” Advances in neural information processing systems, vol. 25,
2012.

[8] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young et al., “Mesh-tensorflow: Deep
learning for supercomputers,” Advances in neural information processing
systems, vol. 31, 2018.

[9] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-lm: Training multi-billion parameter language models using
model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

[10] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “PipeDream: generalized
pipeline parallelism for DNN training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

[11] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neural
networks using pipeline parallelism,” Advances in neural information
processing systems, vol. 32, 2019.

[12] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa, N. Fukumoto,
T. Tabaru, A. Ike, and K. Nakashima, “Yet Another Accelerated SGD:
ResNet-50 Training on ImageNet in 74.7 seconds,” arXiv preprint
arXiv:1903.12650, 2019.

[13] K. Wongsuphasawat, D. Smilkov, J. Wexler, J. Wilson, D. Mane, D. Fritz,
D. Krishnan, F. B. Viégas, and M. Wattenberg, “Visualizing dataflow
graphs of deep learning models in tensorflow,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, no. 1, pp. 1–12, 2017.

[14] N. S. Keskar and R. Socher, “Improving generalization performance by
switching from adam to sgd,” arXiv preprint arXiv:1712.07628, 2017.

[15] A. Bilal, A. Jourabloo, M. Ye, X. Liu, and L. Ren, “Do convolutional neu-
ral networks learn class hierarchy?” IEEE Transactions on Visualization
and Computer Graphics, vol. 24, no. 1, pp. 152–162, 2017.

[16] D. Liu, W. Cui, K. Jin, Y. Guo, and H. Qu, “Deeptracker: Visualizing the
training process of convolutional neural networks,” ACM Transactions on
Intelligent Systems and Technology (TIST), vol. 10, no. 1, pp. 1–25, 2018.

[17] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu, “Analyzing the training
processes of deep generative models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 24, no. 1, pp. 77–87, 2017.

[18] F.-Y. Tzeng and K.-L. Ma, Opening the black box-data driven visualization
of neural networks. IEEE, 2005.

[19] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better analysis of
deep convolutional neural networks,” IEEE Transactions on Visualization
and Computer Graphics, vol. 23, no. 1, pp. 91–100, 2016.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[21] H. Guo, S. Di, R. Gupta, T. Peterka, and F. Cappello, “La VALSE:
Scalable Log Visualization for Fault Characterization in Supercomputers,”
in EGPGV@ EuroVis, 2018, pp. 91–100.

[22] T. Fujiwara, P. Malakar, K. Reda, V. Vishwanath, M. E. Papka, and
K.-L. Ma, “A visual analytics system for optimizing communications
in massively parallel applications,” in 2017 IEEE Conference on Visual
Analytics Science and Technology (VAST). IEEE, 2017, pp. 59–70.

[23] G. Xian, Y. Tang, W. Yang, X. Li, X. Zhang, and J. Yu, “Visual Analysis of
the High-performance Computing Jobs Based on the Comprehensive Load
Scoring Algorithm,” in 2021 7th International Conference on Computer
and Communications (ICCC). IEEE, 2021, pp. 1436–1443.

[24] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale,
“A review of temporal data visualizations based on space-time cube
operations,” in Eurographics conference on visualization, 2014.

[25] E. R. Tufte, “The visual display of quantitative information,” The Journal
for Healthcare Quality (JHQ), vol. 7, no. 3, p. 15, 1985.

[26] C. Palomo, Z. Guo, C. T. Silva, and J. Freire, “Visually exploring trans-
portation schedules,” IEEE Transactions on Visualization and Computer
Graphics, vol. 22, no. 1, pp. 170–179, 2015.

[27] P. Xu, H. Mei, L. Ren, and W. Chen, “ViDX: Visual diagnostics of
assembly line performance in smart factories,” IEEE Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, pp. 291–300, 2016.

[28] B. Milash, C. Plaisant, and A. Rose, “Lifelines: visualizing personal
histories,” in Conference Companion on Human Factors in Computing
Systems, 1996, pp. 392–393.

[29] T. Gu, M. Zhu, W. Chen, Z. Huang, R. Maciejewski, and L. Chang,
“Structuring Mobility Transition With an Adaptive Graph Representation,”
IEEE Transactions on Computational Social Systems, no. 99, pp. 1–12,
2018.

[30] D. Gotz and H. Stavropoulos, “Decisionflow: Visual analytics for high-
dimensional temporal event sequence data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, pp. 1783–1792,
2014.

[31] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman, “Temporal
event sequence simplification,” IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 12, pp. 2227–2236, 2013.

[32] K. Wongsuphasawat and D. Gotz, “Exploring flow, factors, and outcomes
of temporal event sequences with the outflow visualization,” IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp.
2659–2668, 2012.

[33] Z. Jia, M. Zaharia, and A. Aiken, “Beyond Data and Model Parallelism for
Deep Neural Networks,” Proceedings of Machine Learning and Systems,
vol. 1, pp. 1–13, 2019.

[34] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline parallel
dnn training,” arXiv preprint arXiv:1806.03377, 2018.

[35] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in 12th USENIX symposium on operating
systems design and implementation (OSDI 16), 2016, pp. 265–283.

[36] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding
of hierarchical system structures,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[37] N. Henry, J.-D. Fekete, and M. J. McGuffin, “NodeTrix: a hybrid
visualization of social networks,” IEEE Transactions on Visualization
and Computer Graphics, vol. 13, no. 6, pp. 1302–1309, 2007.

[38] H. L. Gantt, Organizing for work. Harcourt, Brace and Howe, 1919.
[39] S. J. Waugh and D. M. Levi, “Spatial alignment across gaps: contributions

of orientation and spatial scale,” JOSA A, vol. 12, no. 10, pp. 2305–2317,
1995.

[40] S. Luz and M. Masoodian, “Visualisation of parallel data streams with
temporal mosaics,” in 2007 11th International Conference Information
Visualization (IV’07). IEEE, 2007, pp. 197–202.

[41] W. Zeng, X. Ren, T. Su, H. Wang, Y. Liao, Z. Wang, X. Jiang,
Z. Yang, K. Wang, X. Zhang et al., “PanGu-α : Large-scale Autoregressive
Pretrained Chinese Language Models with Auto-parallel Computation,”
arXiv preprint arXiv:2104.12369, 2021.

Yating Wei is a Ph.D. student in the State
Key Lab of CAD&CG at Zhejiang University,
Hangzhou. She earned the B.S. degree in soft-
ware engineering from Central South University in
2017. Her research interests are visual analytics
and perceptual consistency.

Zhiyong Wang is a postgraduate in the State
Key Lab of CAD&CG at Zhejiang University,
Hangzhou. His research interests are visual an-
alytics.

Zhongwei Wang is a postgraduate in the State
Key Lab of CAD&CG at Zhejiang University,
Hangzhou. His research interests are visual an-
alytics.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

Yong Dai is a postgraduate in the State Key Lab
of CAD&CG at Zhejiang University, Hangzhou.
His research interests are visual analytics.

Gongchang Ou received the bachelor’s degree
from Chongqing University, in 2018. He is now a
research engineer with the Distributed Data Lab
in CSI, Huawei Technologies Co., Ltd.

Han Gao received the MS degree from Big Data
Technology Program, The Hong Kong University
of Science and Technology, Hong Kong SAR,
China, in 2019. He is now a research engineer
with the Distributed Data Lab in CSI, Huawei
Technologies Co., Ltd.

Haitao Yang received the MS degree in Com-
munication and Information Systems from Dalian
University of Technology in 2013. He is now a
senior engineer in the Distributed Data Lab of
Huawei Technologies Co., Ltd.

Yue Wang received the PhD degree from Institute
of Computing Technology, Chinese Academy of
Sciences. He is now a Senior Principle Engineer
with the Distributed Data Lab in CSI, Huawei
Technologies Co., Ltd.

Caleb Chen Cao is a specialist in the Dist. Data
Lab in CSI, Huawei. He received the Ph.D degree
in Computer Science from HKUST. His research
interests include explainable AI, AI governance
and data fairness.

Luoxuan Weng is a postgraduate in the State
Key Lab of CAD&CG at Zhejiang University,
Hangzhou. His research interests are visual an-
alytics.

Jiaying Lu is a postgraduate in the State Key Lab
of CAD&CG at Zhejiang University, Hangzhou.
His research interests are visual analytics.

Rongchen Zhu is a postgraduate in the State
Key Lab of CAD&CG at Zhejiang University,
Hangzhou. His research interests are visual an-
alytics.

Wei Chen is a professor in the State Key Lab
of CAD&CG, Zhejiang University. His research
interests include visualization and visual analysis,
and has published more than 70 IEEE/ACM
Transactions and IEEE VIS papers. He actively
served as guest or associate editors of the ACM
Transactions on Intelligent System and Technol-
ogy, the IEEE Computer Graphics and Applica-
tions and Journal of Visualization.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2023.3243228

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2024 at 13:16:49 UTC from IEEE Xplore. Restrictions apply.

